The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches

Andersson C, Vasan RS (2018) Epidemiology of cardiovascular disease in young individuals. Nat Rev Cardiol 15:230–240. https://doi.org/10.1038/nrcardio.2017.154

Article  PubMed  Google Scholar 

Steven S, Frenis K, Oelze M, Kalinovic S, Kuntic M, Bayo Jimenez MT, Vujacic-Mirski K, Helmstädter J, Kröller-Schön S, Münzel T, Daiber A (2019) Vascular inflammation and oxidative stress: major triggers for cardiovascular disease. Oxid Med Cell Longev 2019:7092151. https://doi.org/10.1155/2019/7092151

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soppert J, Lehrke M, Marx N, Jankowski J, Noels H (2020) Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev 159:4–33. https://doi.org/10.1016/j.addr.2020.07.019

Article  CAS  PubMed  Google Scholar 

Sunkara A, Raizner A (2019) Supplemental vitamins and minerals for cardiovascular disease prevention and treatment. Methodist Debakey Cardiovasc J 15:179–184. https://doi.org/10.14797/mdcj-15-3-179

Article  PubMed  PubMed Central  Google Scholar 

Zhao D, Liu J, Wang M, Zhang X, Zhou M (2019) Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol 16:203–212. https://doi.org/10.1038/s41569-018-0119-4

Article  PubMed  Google Scholar 

Zhou Y, Song K, Tu B, Sun H, Ding JF, Luo Y, Sha JM, Li R, Zhang Y, Zhao JY, Tao H (2022) METTL3 boosts glycolysis and cardiac fibroblast proliferation by increasing AR methylation. Int J Biol Macromol 223:899–915. https://doi.org/10.1016/j.ijbiomac.2022.11.042

Article  CAS  PubMed  Google Scholar 

Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, Jiang B, Feng J, Li J, Gu Y (2019) PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep 19:783–791. https://doi.org/10.3892/mmr.2018.9713

Article  CAS  PubMed  Google Scholar 

Chang YC, Kim CH (2022) Molecular research of glycolysis. Int J Mol Sci. https://doi.org/10.3390/ijms23095052

Article  PubMed  PubMed Central  Google Scholar 

Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W, Guo C (2020) Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res 39:126. https://doi.org/10.1186/s13046-020-01629-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

TeSlaa T, Bartman CR, Jankowski CSR, Zhang Z, Xu X, Xing X, Wang L, Lu W, Hui S, Rabinowitz JD (2021) The source of glycolytic intermediates in mammalian tissues. Cell Metab 33:367-378.e5. https://doi.org/10.1016/j.cmet.2020.12.020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Badolia R, Ramadurai DKA, Abel ED, Ferrin P, Taleb I, Shankar TS, Krokidi AT, Navankasattusas S, McKellar SH, Yin M, Kfoury AG, Wever-Pinzon O, Fang JC, Selzman CH, Chaudhuri D, Rutter J, Drakos SG (2020) The role of nonglycolytic glucose metabolism in myocardial recovery upon mechanical unloading and circulatory support in chronic heart failure. Circulation 142:259–274. https://doi.org/10.1161/circulationaha.119.044452

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tran DH, Wang ZV (2019) Glucose metabolism in cardiac hypertrophy and heart failure. J Am Heart Assoc 8:e012673. https://doi.org/10.1161/jaha.119.012673

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brahma MK, Pepin ME, Wende AR (2017) My sweetheart is broken: role of glucose in diabetic cardiomyopathy. Diabetes Metab J 41:1–9. https://doi.org/10.4093/dmj.2017.41.1.1

Article  PubMed  Google Scholar 

Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED (2021) Cardiac energy metabolism in heart failure. Circ Res 128:1487–1513. https://doi.org/10.1161/circresaha.121.318241

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertero E, Maack C (2018) Metabolic remodelling in heart failure. Nat Rev Cardiol 15:457–470. https://doi.org/10.1038/s41569-018-0044-6

Article  CAS  PubMed  Google Scholar 

Calmettes G, Ribalet B, John S, Korge P, Ping P, Weiss JN (2015) Hexokinases and cardioprotection. J Mol Cell Cardiol 78:107–115. https://doi.org/10.1016/j.yjmcc.2014.09.020

Article  CAS  PubMed  Google Scholar 

John S, Weiss JN, Ribalet B (2011) Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PLoS ONE 6:e17674. https://doi.org/10.1371/journal.pone.0017674

Article  CAS  PubMed  PubMed Central  Google Scholar 

Depre C, Vanoverschelde JL, Taegtmeyer H (1999) Glucose for the heart. Circulation 99:578–588. https://doi.org/10.1161/01.cir.99.4.578

Article  CAS  PubMed  Google Scholar 

Wu R, Wyatt E, Chawla K, Tran M, Ghanefar M, Laakso M, Epting CL, Ardehali H (2012) Hexokinase II knockdown results in exaggerated cardiac hypertrophy via increased ROS production. EMBO Mol Med 4:633–646. https://doi.org/10.1002/emmm.201200240

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rabbani N, Xue M, Thornalley PJ (2022) Hexokinase-2-linked glycolytic overload and unscheduled glycolysis-driver of insulin resistance and development of vascular complications of diabetes. Int J Mol Sci. https://doi.org/10.3390/ijms23042165

Article  PubMed  PubMed Central  Google Scholar 

Rabbani N, Thornalley PJ (2019) Hexokinase-2 glycolytic overload in diabetes and ischemia-reperfusion injury. Trends Endocrinol Metab 30:419–431. https://doi.org/10.1016/j.tem.2019.04.011

Article  CAS  PubMed  Google Scholar 

Dambrova M, Zuurbier CJ, Borutaite V, Liepinsh E, Makrecka-Kuka M (2021) Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury. Free Radic Biol Med 165:24–37. https://doi.org/10.1016/j.freeradbiomed.2021.01.036

Article  CAS  PubMed  Google Scholar 

Lemasters JJ, Holmuhamedov E (2006) Voltage-dependent anion channel (VDAC) as mitochondrial governator–thinking outside the box. Biochim Biophys Acta 1762:181–190. https://doi.org/10.1016/j.bbadis.2005.10.006

Article  CAS  PubMed  Google Scholar 

Pasdois P, Parker JE, Halestrap AP (2012) Extent of mitochondrial hexokinase II dissociation during ischemia correlates with mitochondrial cytochrome c release, reactive oxygen species production, and infarct size on reperfusion. J Am Heart Assoc 2:e005645. https://doi.org/10.1161/jaha.112.005645

Article  PubMed  Google Scholar 

Kim KW, Kim SW, Lim S, Yoo KJ, Hwang KC, Lee S (2021) Neutralization of hexokinase 2-targeting miRNA attenuates the oxidative stress-induced cardiomyocyte apoptosis. Clin Hemorheol Microcirc 78:57–68. https://doi.org/10.3233/ch-200924

Article  CAS  PubMed  Google Scholar 

Halestrap AP, Pereira GC, Pasdois P (2015) The role of hexokinase in cardioprotection - mechanism and potential for translation. Br J Pharmacol 172:2085–2100. https://doi.org/10.1111/bph.12899

Article  CAS  PubMed  Google Scholar 

Nederlof R, Eerbeek O, Hollmann MW, Southworth R, Zuurbier CJ (2014) Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischaemia-reperfusion injury in heart. Br J Pharmacol 171:2067–2079. https://doi.org/10.1111/bph.12363

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo L (2022) Mitochondrial ATP synthase inhibitory factor 1 interacts with the p53-cyclophilin D complex and promotes opening of the permeability transition pore. J Biol Chem 298:101858. https://doi.org/10.1016/j.jbc.2022.101858

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo L (2021) Mitochondria and the permeability transition pore in cancer metabolic reprogramming. Biochem Pharmacol 188:114537. https://doi.org/10.1016/j.bcp.2021.114537

Article  CAS  PubMed  Google Scholar 

Ciscato F, Ferrone L, Masgras I, Laquatra C, Rasola A (2021) Hexokinase 2 in Cancer: A Prima Donna Playing Multiple Characters. Int J Mol Sci. https://doi.org/10.3390/ijms22094716

Article  PubMed  PubMed Central  Google Scholar 

Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136. https://doi.org/10.1161/01.cir.74.5.1124

Article  CAS  PubMed  Google Scholar 

Tian M, Xie Y, Meng Y, Ma W, Tong Z, Yang X, Lai S, Zhou Y, He M, Liao Z (2019) Resveratrol protects cardiomyocytes against anoxia/reoxygenation via dephosphorylation of VDAC1 by Akt-GSK3 β pathway. Eur J Pharmacol 843:80–87. https://doi.org/10.1016/j.ejphar.2018.11.016

Article  CAS  PubMed 

留言 (0)

沒有登入
gif