Distinct cytoskeletal regulators of mechanical memory in cardiac fibroblasts and cardiomyocytes

Balestrini JL, Chaudhry S, Sarrazy V, Koehler A, Hinz B (2012) The mechanical memory of lung myofibroblasts. Integr Biol (Camb) 4:410–421. https://doi.org/10.1039/c2ib00149g

Article  CAS  PubMed  Google Scholar 

Chen CY, Caporizzo MA, Bedi K, Vite A, Bogush AI, Robison P, Heffler JG, Salomon AK, Kelly NA, Babu A, Morley MP, Margulies KB, Prosser BL (2018) Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nat Med 24:1225–1233. https://doi.org/10.1038/s41591-018-0046-2

Article  CAS  PubMed  Google Scholar 

Chen CY, Salomon AK, Caporizzo MA, Curry S, Kelly NA, Bedi K, Bogush AI, Kramer E, Schlossarek S, Janiak P, Moutin M, Carrier L, Margulies KB, Prosser BL (2020) Depletion of vasohibin 1 speeds contraction and relaxation in failing human cardiomyocytes. Circ Res 127:e14–e27. https://doi.org/10.1161/CIRCRESAHA.119.315947

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corbin EA, Vite A, Peyster EG, Bhoopalam M, Brandimarto J, Wang X, Bennett AI, Clark AT, Cheng X, Turner KT, Musunuru K, Margulies KB (2019) Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes. ACS Appl Mater Interfaces 11:20603–20614. https://doi.org/10.1021/acsami.9b02446

Article  CAS  PubMed  Google Scholar 

Doppler SA, Carvalho C, Lahm H, Deutsch M, Dressen M, Puluca N, Lange R, Krane M (2017) Cardiac fibroblasts: more than mechanical support. J Thorac Dis 9:S36–S51. https://doi.org/10.21037/jtd.2017.03.122

Article  PubMed  PubMed Central  Google Scholar 

Even-Ram S, Artym V, Yamada KM (2006) Matrix control of stem cell fate. Cell 126:645–647. https://doi.org/10.1016/j.cell.2006.08.008

Article  CAS  PubMed  Google Scholar 

Eyckmans J, Chen CS (2014) Stem cell differentiation: sticky mechanical memory. Nat Mater 13:542–543. https://doi.org/10.1038/nmat3989

Article  CAS  PubMed  Google Scholar 

Haque ZK, Wang D (2017) How cardiomyocytes sense pathophysiological stresses for cardiac remodeling. Cell Mol Life Sci 74:983–1000. https://doi.org/10.1007/s00018-016-2373-0

Article  CAS  PubMed  Google Scholar 

Heo S, Thorpe SD, Driscoll TP, Duncan RL, Lee DA, Mauck RL (2015) Biophysical regulation of chromatin architecture instills a mechanical memory in mesenchymal stem cells. Sci Rep 5:16895. https://doi.org/10.1038/srep16895

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kessler D, Dethlefsen S, Haase I, Plomann M, Hirche F, Krieg T, Eckes B (2001) Fibroblasts in mechanically stressed collagen lattices assume a “synthetic” phenotype. J Biol Chem 276:36575–36585. https://doi.org/10.1074/jbc.M101602200

Article  CAS  PubMed  Google Scholar 

Martino F, Perestrelo AR, Vinarsky V, Pagliari S, Forte G (2018) Cellular mechanotransduction: from tension to function. Front Physiol 9:824. https://doi.org/10.3389/fphys.2018.00824

Article  PubMed  PubMed Central  Google Scholar 

Mitsui W, Tamura K, Mizutani T, Haga H, Kawabata K (2009) Mechanical response of single myoblasts to various stretching patterns visualized by scanning probe microscopy. Arch Histol Cytol 72:227–234. https://doi.org/10.1679/aohc.72.227

Article  PubMed  Google Scholar 

Mostert D, Groenen B, Klouda L, Passier R, Goumans M, Kurniawan NA, Bouten CVC (2022) Human pluripotent stem cell-derived cardiomyocytes align under cyclic strain when guided by cardiac fibroblasts. APL Bioeng 6:046108. https://doi.org/10.1063/5.0108914

Article  CAS  PubMed  PubMed Central  Google Scholar 

Munch J, Abdelilah-Seyfried S (2021) Sensing and responding of cardiomyocytes to changes of tissue stiffness in the diseased heart. Front Cell Dev Biol 9:642840. https://doi.org/10.3389/fcell.2021.642840

Article  PubMed  PubMed Central  Google Scholar 

Nasrollahi S, Walter C, Loza AJ, Schimizzi GV, Longmore GD, Pathak A (2017) Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory. Biomaterials 146:146–155. https://doi.org/10.1016/j.biomaterials.2017.09.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohashi K, Fujiwara S, Mizuno K (2017) Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J Biochem 161:245–254. https://doi.org/10.1093/jb/mvw082

Article  CAS  PubMed  Google Scholar 

Parker KK, Ingber DE (2007) Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Philos Trans R Soc Lond B Biol Sci 362:1267–1279. https://doi.org/10.1098/rstb.2007.2114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robison P, Caporizzo MA, Ahmadzadeh H, Bogush AI, Chen CY, Margulies KB, Shenoy VB, Prosser BL (2016) Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science 352:aff0659. https://doi.org/10.1126/science.aaf0659

Article  CAS  Google Scholar 

Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH (2019) Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol 16:361–378. https://doi.org/10.1038/s41569-019-0155-8

Article  PubMed  PubMed Central  Google Scholar 

Scott AK, Rafuse M, Neu CP (2023) Mechanically induced alterations in chromatin architecture guide the balance between cell plasticity and mechanical memory. Front Cell Dev Biol 11:1084759. https://doi.org/10.3389/fcell.2023.1084759

Article  PubMed  PubMed Central  Google Scholar 

Spagnol ST, Dahl KN (2016) Spatially resolved quantification of chromatin condensation through differential local rheology in cell nuclei fluorescence lifetime imaging. PLoS ONE 11:e0146244. https://doi.org/10.1371/journal.pone.0146244

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988. https://doi.org/10.1161/01.cir.101.25.2981

Article  CAS  PubMed  Google Scholar 

Tsuda T (2021) Clinical Assessment of ventricular wall stress in understanding compensatory hypertrophic response and maladaptive ventricular remodeling. J Cardiovasc Dev Dis 8:122. https://doi.org/10.3390/jcdd8100122

Article  PubMed  PubMed Central  Google Scholar 

Vite A, Caporizzo MA, Corbin EA, Brandimarto J, McAfee Q, Livingston CE, Prosser BL, Margulies KB (2022) Extracellular stiffness induces contractile dysfunction in adult cardiomyocytes via cell-autonomous and microtubule-dependent mechanisms. Basic Res Cardiol 117:41–45. https://doi.org/10.1007/s00395-022-00952-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voorhees AP, Han H (2015) Biomechanics of cardiac function. Compr Physiol 5:1623–1644. https://doi.org/10.1002/cphy.c140070

Article  PubMed  PubMed Central  Google Scholar 

Walker CJ, Crocini C, Ramirez D, Killaars AR, Grim JC, Aguado BA, Clark K, Allen MA, Dowell RD, Leinwand LA, Anseth KS (2021) Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. Nat Biomed Eng 5:1485–1499. https://doi.org/10.1038/s41551-021-00709-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang C, Tibbitt MW, Basta L, Anseth KS (2014) Mechanical memory and dosing influence stem cell fate. Nat Mater 13:645–652. https://doi.org/10.1038/nmat3889

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou C, Duan M, Guo D, Du X, Zhang D, Xie J (2022) Microenvironmental stiffness mediates cytoskeleton re-organization in chondrocytes through laminin-FAK mechanotransduction. Int J Oral Sci 14:15–25. https://doi.org/10.1038/s41368-022-00165-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif