Targeting cardiomyocyte cell cycle regulation in heart failure

Abouleisa RRE, Salama ABM, Ou Q, Tang X-L, Solanki M, Guo Y, Nong Y, McNally L, Lorkiewicz PK, Kassem KM, Ahern BM, Choudhary K, Thomas R, Huang Y, Juhardeen HR, Siddique A, Ifthikar Z, Hammad SK, Elbaz AS, Ivey KN, Conklin DJ, Satin J, Hill BG, Srivastava D, Bolli R, Mohamed TMA (2022) Transient cell cycle induction in cardiomyocytes to treat subacute ischemic heart failure. Circulation 145:1339–1355. https://doi.org/10.1161/CIRCULATIONAHA.121.057641

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agah R, Kirshenbaum LA, Abdellatif M, Truong LD, Chakraborty S, Michael LH, Schneider MD (1997) Adenoviral delivery of E2F–1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo. J Clin Invest 100:2722–2728. https://doi.org/10.1172/JCI119817

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aharonov A, Shakked A, Umansky KB, Savidor A, Genzelinakh A, Kain D, Lendengolts D, Revach O-Y, Morikawa Y, Dong J, Levin Y, Geiger B, Martin JF, Tzahor E (2020) ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nat Cell Biol 22:1346–1356. https://doi.org/10.1038/s41556-020-00588-4

Article  CAS  PubMed  Google Scholar 

Ahuja P, Sdek P, MacLellan WR (2007) Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 87:521–544. https://doi.org/10.1152/physrev.00032.2006

Article  CAS  PubMed  Google Scholar 

Alam P, Haile B, Arif M, Pandey R, Rokvic M, Nieman M, Maliken BD, Paul A, Wang Y, Sadayappan S, Ahmed RPH, Kanisicak O (2019) Inhibition of senescence-associated genes Rb1 and Meis2 in adult cardiomyocytes results in cell cycle reentry and cardiac repair post-myocardial infarction. JAHA 8:e012089. https://doi.org/10.1161/JAHA.119.012089

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali SR, Hippenmeyer S, Saadat LV, Luo L, Weissman IL, Ardehali R (2014) Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci USA 111:8850–8855. https://doi.org/10.1073/pnas.1408233111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alkass K, Panula J, Westman M, Wu T-D, Guerquin-Kern J-L, Bergmann O (2015) No evidence for cardiomyocyte number expansion in preadolescent mice. Cell 163:1026–1036. https://doi.org/10.1016/j.cell.2015.10.035

Article  CAS  PubMed  Google Scholar 

Alvarez R, Wang BJ, Quijada PJ, Avitabile D, Ho T, Shaitrit M, Chavarria M, Firouzi F, Ebeid D, Monsanto MM, Navarrete N, Moshref M, Siddiqi S, Broughton KM, Bailey BA, Gude NA, Sussman MA (2019) Cardiomyocyte cell cycle dynamics and proliferation revealed through cardiac-specific transgenesis of fluorescent ubiquitinated cell cycle indicator (FUCCI). J Mol Cell Cardiol 127:154–164. https://doi.org/10.1016/j.yjmcc.2018.12.007

Article  CAS  PubMed  Google Scholar 

Anatskaya OV, Vinogradov AE (2007) Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver. Genomics 89:70–80. https://doi.org/10.1016/j.ygeno.2006.08.014

Article  CAS  PubMed  Google Scholar 

Auchampach J, Han L, Huang GN, Kühn B, Lough JW, O’Meara CC, Payumo AY, Rosenthal NA, Sucov HM, Yutzey KE, Patterson M (2022) Measuring cardiomyocyte cell-cycle activity and proliferation in the age of heart regeneration. Am J Physiol-Heart Circ Physiol 322:H579–H596. https://doi.org/10.1152/ajpheart.00666.2021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN (2014) Macrophages are required for neonatal heart regeneration. J Clin Invest 124:1382–1392. https://doi.org/10.1172/JCI72181

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bae J, Salamon RJ, Brandt EB, Paltzer WG, Zhang Z, Britt EC, Hacker TA, Fan J, Mahmoud AI (2021) Malonate promotes adult cardiomyocyte proliferation and heart regeneration. Circulation 143:1973–1986. https://doi.org/10.1161/CIRCULATIONAHA.120.049952

Article  CAS  PubMed  Google Scholar 

Baehr A, Umansky KB, Bassat E, Jurisch V, Klett K, Bozoglu T, Hornaschewitz N, Solyanik O, Kain D, Ferraro B, Cohen-Rabi R, Krane M, Cyran C, Soehnlein O, Laugwitz KL, Hinkel R, Kupatt C, Tzahor E (2020) Agrin promotes coordinated therapeutic processes leading to improved cardiac repair in pigs. Circulation 142:868–881. https://doi.org/10.1161/CIRCULATIONAHA.119.045116

Article  CAS  PubMed  Google Scholar 

Bailey LRJ, Bugg D, Reichardt IM, Ortaç CD, Gunaje J, Johnson R, MacCoss MJ, Sakamoto T, Kelly DP, Regnier M, Davis JM (2023) MBNL1 regulates programmed postnatal switching between regenerative and differentiated cardiac states. Cell Biol. https://doi.org/10.1161/CIRCULATIONAHA.123.066860

Article  Google Scholar 

Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Baruch Umansky K, Yifa O, Kain D, Rajchman D, Leach J, Riabov Bassat D, Udi Y, Sarig R, Sagi I, Martin JF, Bursac N, Cohen S, Tzahor E (2017) The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547:179–184. https://doi.org/10.1038/nature22978

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beigi F, Schmeckpeper J, Pow-anpongkul P, Payne JA, Zhang L, Zhang Z, Huang J, Mirotsou M, Dzau VJ (2013) C3orf58, a novel paracrine protein, stimulates cardiomyocyte cell-cycle progression through the PI3K–AKT–CDK7 pathway. Circ Res 113:372–380. https://doi.org/10.1161/CIRCRESAHA.113.301075

Article  CAS  PubMed  Google Scholar 

Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102. https://doi.org/10.1126/science.1164680

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117:568–575. https://doi.org/10.1172/JCI31044

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bersell K, Arab S, Haring B, Kühn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–270. https://doi.org/10.1016/j.cell.2009.04.060

Article  CAS  PubMed  Google Scholar 

Besson A, Dowdy SF, Roberts JM (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14:159–169. https://doi.org/10.1016/j.devcel.2008.01.013

Article  CAS  PubMed  Google Scholar 

Bicknell KA, Coxon CH, Brooks G (2004) Forced expression of the cyclin B1–CDC2 complex induces proliferation in adult rat cardiomyocytes. Biochem J 382:411–416. https://doi.org/10.1042/BJ20031481

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blow JJ, Tanaka TU (2005) The chromosome cycle: coordinating replication and segregation: second in the cycles review series. EMBO Rep 6:1028–1034. https://doi.org/10.1038/sj.embor.7400557

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brooks G (1998) Arresting developments in the cardiac myocyte cell cycle: role of cyclin-dependent kinase inhibitors. Cardiovasc Res 39:301–311. https://doi.org/10.1016/S0008-6363(98)00125-4

Article  CAS  PubMed  Google Scholar 

Broughton KM, Sussman MA (2019) Adult cardiomyocyte cell cycle detour: off-ramp to quiescent destinations. Trends Endocrinol Metab 30:557–567. https://doi.org/10.1016/j.tem.2019.05.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai B, Ma W, Wang X, Sukhareva N, Hua B, Zhang L, Xu J, Li X, Li S, Liu S, Yu M, Xu Y, Song R, Xu B, Yang F, Han Z, Ding F, Huang Q, Yu Y, Zhao Y, Wang J, Bamba D, Zagidullin N, Li F, Tian Y, Pan Z, Yang B (2020) Targeting LncDACH1 promotes cardiac repair and regeneration after myocardium infarction. Cell Death Differ 27:2158–2175. https://doi.org/10.1038/s41418-020-0492-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campa VM, Gutiérrez-Lanza R, Cerignoli F, Díaz-Trelles R, Nelson B, Tsuji T, Barcova M, Jiang W, Mercola M (2008) Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 183:129–141. https://doi.org/10.1083/jcb.200806104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cánepa ET, Scassa ME, Ceruti JM, Marazita MC, Carcagno AL, Sirkin PF, Ogara MF (2007) INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 59:419–426. https://doi.org/10.1080/15216540701488358

Article  CAS  PubMed  Google Scholar 

Cao X, Wang J, Wang Z, Du J, Yuan X, Huang W, Meng J, Gu H, Nie Y, Ji B, Hu S, Zheng Z (2013) MicroRNA profiling during rat ventricular maturation: a role for miR-29a in regulating cardiomyocyte cell cycle re-entry. FEBS Lett 587:1548–1555. https://doi.org/10.1016/j.febslet.2013.01.075

Article  CAS  PubMed  Google Scholar 

Cardoso AC, Lam NT, Savla JJ, Nakada Y, Pereira AHM, Elnwasany A, Menendez-Montes I, Ensley EL, Bezan Petric U, Sharma G, Sherry AD, Malloy CR, Khemtong C, Kinter MT, Tan WLW, Anene-Nzelu CG, Foo RS-Y, Nguyen NUN, Li S, Ahmed MS, Elhelaly WM, Abdisalaam S, Asaithamby A, Xing C, Kanchwala M, Vale G, Eckert KM, Mitsche MA, McDonald JG, Hill JA, Huang L, Shaul PW, Szweda LI, Sadek HA (2020) Mitochondrial substrate utilization regulates cardiomyocyte cell-cycle progression. Nat Metab 2:167–178. https://doi.org/10.1038/s42255-020-0169-x

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif