Bei Y, Huang Z, Feng X, Li L, Wei M, Zhu Y, Liu S, Chen C, Yin M, Jiang H, Xiao J (2022) Lymphangiogenesis contributes to exercise-induced physiological cardiac growth. J Sport Health Sci 11:466–478. https://doi.org/10.1016/j.jshs.2022.02.005
Article PubMed PubMed Central Google Scholar
Bei Y, Pan LL, Zhou Q, Zhao C, Xie Y, Wu C, Meng X, Gu H, Xu J, Zhou L, Sluijter JPG, Das S, Agerberth B, Sun J, Xiao J (2019) Cathelicidin-related antimicrobial peptide protects against myocardial ischemia/reperfusion injury. BMC Med 17:42. https://doi.org/10.1186/s12916-019-1268-y
Article PubMed PubMed Central Google Scholar
Bei Y, Wang L, Ding R, Che L, Fan Z, Gao W, Liang Q, Lin S, Liu S, Lu X, Shen Y, Wu G, Yang J, Zhang G, Zhao W, Guo L, Xiao J (2021) Animal exercise studies in cardiovascular research: current knowledge and optimal design-A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors’ Association. J Sport Health Sci 10:660–674. https://doi.org/10.1016/j.jshs.2021.08.002
Article PubMed PubMed Central Google Scholar
Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR (2018) Understanding key mechanisms of exercise-induced cardiac protection to mitigate disease: current knowledge and emerging concepts. Physiol Rev 98:419–475. https://doi.org/10.1152/physrev.00043.2016
Article CAS PubMed Google Scholar
Bostrom P, Mann N, Wu J, Quintero PA, Plovie ER, Panakova D, Gupta RK, Xiao C, MacRae CA, Rosenzweig A, Spiegelman BM (2010) C/EBPbeta controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143:1072–1083. https://doi.org/10.1016/j.cell.2010.11.036
Article CAS PubMed PubMed Central Google Scholar
Chang K, Marran K, Valentine A, Hannon GJ (2013) Creating an miR30-based shRNA vector. Cold Spring Harb Protoc 2013:631–635. https://doi.org/10.1101/pdb.prot075853
Chen S, Cao X, Zhang J, Wu W, Zhang B, Zhao F (2022) circVAMP3 drives CAPRIN1 phase separation and inhibits hepatocellular carcinoma by suppressing c-Myc translation. Adv Sci (Weinh). https://doi.org/10.1002/advs.202103817
Article PubMed PubMed Central Google Scholar
Chen X, Zhou X, Wang X (2022) m(6)A binding protein YTHDF2 in cancer. Exp Hematol Oncol 11:21. https://doi.org/10.1186/s40164-022-00269-y
Article CAS PubMed PubMed Central Google Scholar
Chow LS, Gerszten RE, Taylor JM, Pedersen BK, van Praag H, Trappe S, Febbraio MA, Galis ZS, Gao Y, Haus JM, Lanza IR, Lavie CJ, Lee CH, Lucia A, Moro C, Pandey A, Robbins JM, Stanford KI, Thackray AE, Villeda S, Watt MJ, Xia A, Zierath JR, Goodpaster BH, Snyder MP (2022) Exerkines in health, resilience and disease. Nat Rev Endocrinol 18:273–289. https://doi.org/10.1038/s41574-022-00641-2
Article CAS PubMed PubMed Central Google Scholar
Dai X, Lv X, Thompson EW, Ostrikov KK (2022) Histone lactylation: epigenetic mark of glycolytic switch. Trends Genet 38:124–127. https://doi.org/10.1016/j.tig.2021.09.009
Article CAS PubMed Google Scholar
Deng X, Qing Y, Horne D, Huang H, Chen J (2023) The roles and implications of RNA m(6)A modification in cancer. Nat Rev Clin Oncol 20:507–526. https://doi.org/10.1038/s41571-023-00774-x
Article CAS PubMed Google Scholar
Dou X, Huang L, Xiao Y, Liu C, Li Y, Zhang X, Yu L, Zhao R, Yang L, Chen C, Yu X, Gao B, Qi M, Gao Y, Shen B, Sun S, He C, Liu J (2023) METTL14 is a chromatin regulator independent of its RNA N6-methyladenosine methyltransferase activity. Protein Cell 14:683–697. https://doi.org/10.1093/procel/pwad009
Article PubMed PubMed Central Google Scholar
Fan M, Yang K, Wang X, Chen L, Gill PS, Ha T, Liu L, Lewis NH, Williams DL, Li C (2023) Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. Sci Adv 9:eadc9465. https://doi.org/10.1126/sciadv.adc9465
Article CAS PubMed PubMed Central Google Scholar
Fang R, Chen X, Zhang S, Shi H, Ye Y, Shi H, Zou Z, Li P, Guo Q, Ma L, He C, Huang S (2021) EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun 12:177. https://doi.org/10.1038/s41467-020-20379-7
Article CAS PubMed PubMed Central Google Scholar
Flamand MN, Tegowski M, Meyer KD (2023) The proteins of mRNA modification: writers, readers, and erasers. Annu Rev Biochem 92:145–173. https://doi.org/10.1146/annurev-biochem-052521-035330
Article CAS PubMed PubMed Central Google Scholar
Franzago M, Pilenzi L, Di Rado S, Vitacolonna E, Stuppia L (2022) The epigenetic aging, obesity, and lifestyle. Front Cell Dev Biol 10:985274. https://doi.org/10.3389/fcell.2022.985274
Article PubMed PubMed Central Google Scholar
Fu Y, Zhuang X (2020) m(6)A-binding YTHDF proteins promote stress granule formation. Nat Chem Biol 16:955–963. https://doi.org/10.1038/s41589-020-0524-y
Article CAS PubMed PubMed Central Google Scholar
Gaffney DO, Jennings EQ, Anderson CC, Marentette JO, Shi T, Schou Oxvig AM, Streeter MD, Johannsen M, Spiegel DA, Chapman E, Roede JR, Galligan JJ (2020) Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chem Biol 27(206–213):e206. https://doi.org/10.1016/j.chembiol.2019.11.005
Gao R, Wang L, Bei Y, Wu X, Wang J, Zhou Q, Tao L, Das S, Li X, Xiao J (2021) Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation 144:303–317. https://doi.org/10.1161/CIRCULATIONAHA.120.050446
Article CAS PubMed Google Scholar
Gatsiou A, Stellos K (2023) RNA modifications in cardiovascular health and disease. Nat Rev Cardiol 20:325–346. https://doi.org/10.1038/s41569-022-00804-8
Article CAS PubMed Google Scholar
Ge Y, Jin J, Li J, Ye M, Jin X (2022) The roles of G3BP1 in human diseases (review). Gene 821:146294. https://doi.org/10.1016/j.gene.2022.146294
Article CAS PubMed Google Scholar
Gibb AA, Hill BG (2018) Metabolic coordination of physiological and pathological cardiac remodeling. Circ Res 123:107–128. https://doi.org/10.1161/CIRCRESAHA.118.312017
Article CAS PubMed PubMed Central Google Scholar
Gilbert WV, Nachtergaele S (2023) mRNA regulation by RNA modifications. Annu Rev Biochem 92:175–198. https://doi.org/10.1146/annurev-biochem-052521-035949
Article CAS PubMed Google Scholar
Glancy B, Kane DA, Kavazis AN, Goodwin ML, Willis WT, Gladden LB (2021) Mitochondrial lactate metabolism: history and implications for exercise and disease. J Physiol 599:863–888. https://doi.org/10.1113/JP278930
Article CAS PubMed Google Scholar
Goodwin GW, Taegtmeyer H (2000) Improved energy homeostasis of the heart in the metabolic state of exercise. Am J Physiol Heart Circ Physiol 279:H1490-1501. https://doi.org/10.1152/ajpheart.2000.279.4.H1490
Article CAS PubMed Google Scholar
He M, Yang Z, Abdellatif M, Sayed D (2015) GTPase activating protein (Sh3 Domain) binding protein 1 regulates the processing of microRNA-1 during cardiac hypertrophy. PLoS ONE 10:e0145112. https://doi.org/10.1371/journal.pone.0145112
Article CAS PubMed PubMed Central Google Scholar
Hesser CR, Karijolich J, Dominissini D, He C, Glaunsinger BA (2018) N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi’s sarcoma-associated herpesvirus infection. PLoS Pathog 14:e1006995. https://doi.org/10.1371/journal.ppat.1006995
Article CAS PubMed PubMed Central Google Scholar
Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789. https://doi.org/10.1038/s41569-020-0403-y
Heusch G (2024) Myocardial ischemia/reperfusion: Translational pathophysiology of ischemic heart disease. Med 5:10–31. https://doi.org/10.1016/j.medj.2023.12.007
Article CAS PubMed Google Scholar
Hou G, Zhao X, Li L, Yang Q, Liu X, Huang C, Lu R, Chen R, Wang Y, Jiang B, Yu J (2021) SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity with m6A-modified mRNAs. Nucleic Acids Res 49:2859–2877. https://doi.org/10.1093/nar/gkab065
Article CAS PubMed PubMed Central Google Scholar
Hou J, Zhang H, Liu J, Zhao Z, Wang J, Lu Z, Hu B, Zhou J, Zhao Z, Feng M, Zhang H, Shen B, Huang X, Sun B, Smyth MJ, He C, Xia Q (2019) YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Mol Cancer 18:163. https://doi.org/10.1186/s12943-019-1082-3
Comments (0)