Chidamide inhibits cell glycolysis in acute myeloid leukemia by decreasing N6-methyladenosine-related GNAS-AS1

Zhang W, et al. Long non-coding RNA taurine upregulated gene 1 targets miR-185 to regulate cell proliferation and glycolysis in acute myeloid leukemia cells in vitro. Onco Targets Ther. 2020;13:7887–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ofran Y, Rowe JM. Acute myeloid leukemia in adolescents and young adults: challenging aspects. Acta Haematol. 2014;132(3–4):292–7.

CAS  PubMed  Google Scholar 

Chiu CF, et al. T315 decreases acute myeloid leukemia cell viability through a combination of apoptosis induction and autophagic cell death. Int J Mol Sci. 2016;17(8):1337.

Article  PubMed  PubMed Central  Google Scholar 

Lin L, et al. Chidamide inhibits acute myeloid leukemia cell proliferation by lncRNA VPS9D1-AS1 downregulation via MEK/ERK signaling pathway. Front Pharmacol. 2020;11: 569651.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai X, et al. Chidamide suppresses the glycolysis of triple negative breast cancer cells partially by targeting the miR-33a-5p-LDHA axis. Mol Med Rep. 2019;20(2):1857–65.

CAS  PubMed  Google Scholar 

Shouksmith AE, et al. Class I/IIb-selective HDAC inhibitor exhibits oral bioavailability and therapeutic efficacy in acute myeloid leukemia. ACS Med Chem Lett. 2020;11(1):56–64.

Article  CAS  PubMed  Google Scholar 

Zhang C, et al. Tumour-associated mutant p53 drives the Warburg effect. Nat Commun. 2013;4:2935.

Article  PubMed  Google Scholar 

Wang JD, et al. Disruption of mitochondrial oxidative phosphorylation by chidamide eradicates leukemic cells in AML. Clin Transl Oncol. 2023;25(6):1805–20.

Article  CAS  PubMed  Google Scholar 

Gu S, et al. Synergistic effect of HDAC inhibitor Chidamide with Cladribine on cell cycle arrest and apoptosis by targeting HDAC2/c-Myc/RCC1 axis in acute myeloid leukemia. Exp Hematol Oncol. 2023;12(1):23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao S, et al. Chidamide, a novel histone deacetylase inhibitor, inhibits the viability of MDS and AML cells by suppressing JAK2/STAT3 signaling. Am J Transl Res. 2016;8(7):3169–78.

CAS  PubMed  PubMed Central  Google Scholar 

Alvarez-Dominguez JR, Lodish HF. Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood. 2017;130(18):1965–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng Y, et al. LncRNA NR-104098 inhibits AML proliferation and induces differentiation through repressing EZH2 transcription by interacting with E2F1. Front Cell Dev Biol. 2020;8:142.

Article  PubMed  PubMed Central  Google Scholar 

Li J, et al. LncRNA UCA1 promotes the progression of AML by upregulating the expression of CXCR4 and CYP1B1 by affecting the stability of METTL14. J Oncol. 2022;2022:2756986.

PubMed  PubMed Central  Google Scholar 

Li Z, et al. GNAS-AS1/miR-4319/NECAB3 axis promotes migration and invasion of non-small cell lung cancer cells by altering macrophage polarization. Funct Integr Genomics. 2020;20(1):17–28.

Article  PubMed  Google Scholar 

Mi Z, et al. Biomarker potential of lncRNA GNAS-AS1 in osteosarcoma prognosis and effect on cellular function. J Orthop Surg Res. 2021;16(1):470.

Article  PubMed  PubMed Central  Google Scholar 

Ding N, et al. Chidamide increases the sensitivity of non-small cell lung cancer to crizotinib by decreasing c-MET mRNA methylation. Int J Biol Sci. 2020;16(14):2595–611.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dorrance AM, et al. Targeting leukemia stem cells in vivo with antagomiR-126 nanoparticles in acute myeloid leukemia. Leukemia. 2015;29(11):2143–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bayraktar E, et al. Targeting miRNAs and other non-coding RNAs as a therapeutic approach: an update. Noncoding RNA. 2023;9(2):27.

Xiao Y, Su C, Deng T. miR-223 decreases cell proliferation and enhances cell apoptosis in acute myeloid leukemia via targeting FBXW7. Oncol Lett. 2016;12(5):3531–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li S, et al. The comprehensive landscape of miR-34a in cancer research. Cancer Metastasis Rev. 2021;40(3):925–48.

Article  CAS  PubMed  Google Scholar 

Liu X, Li H. Diagnostic value of miR-34a in bone marrow mononuclear cells of acute myeloid leukemia patients. Clin Lab. 2020;66(3):419–24.

CAS  Google Scholar 

Cheng Y, et al. Identification of circRNA-lncRNA-miRNA-mRNA competitive endogenous RNA network as novel prognostic markers for acute myeloid leukemia. Genes (Basel). 2020;11(8):868.

Wang CH, et al. LncRNA ANRIL promotes cell proliferation, migration and invasion during acute myeloid leukemia pathogenesis via negatively regulating miR-34a. Int J Biochem Cell Biol. 2020;119: 105666.

Article  CAS  PubMed  Google Scholar 

Li S, et al. lncARSR sponges miR-34a-5p to promote colorectal cancer invasion and metastasis via hexokinase-1-mediated glycolysis. Cancer Sci. 2020;111(10):3938–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He X, et al. IGF2BP2 overexpression indicates poor survival in patients with acute myelocytic leukemia. Cell Physiol Biochem. 2018;51(4):1945–56.

Article  CAS  PubMed  Google Scholar 

Wang XQ, et al. Long non-coding RNA GNAS-AS1 promotes cell migration and invasion via regulating Wnt/β-catenin pathway in nasopharyngeal carcinoma. Eur Rev Med Pharmacol Sci. 2020;24(6):3077–84.

PubMed  Google Scholar 

Wang Y, et al. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer. 2019;18(1):174.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu D, et al. IGF2BP2 promotes gastric cancer progression by regulating the IGF1R-RhoA-ROCK signaling pathway. Cell Signal. 2022;94: 110313.

Article  CAS  PubMed  Google Scholar 

Liang X, Xia R. Kinesin family member 2A acts as a potential prognostic marker and treatment target via interaction with PI3K/AKT and RhoA/ROCK pathways in acute myeloid leukemia. Oncol Rep. 2022;47(1):26.

Chiu CF, et al. T315 Decreases acute myeloid leukemia cell viability through a combination of apoptosis induction and autophagic cell death. Int J Mol Sci. 2016;17(8):1337.

Chandel NS. Glycolysis. Cold Spring Harb Perspect Biol. 2021;13(5):a040535.

Wang L, et al. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener. 2019;14(1):2.

Article  PubMed  PubMed Central  Google Scholar 

Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer. 2016;16(10):635–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herst PM, et al. The level of glycolytic metabolism in acute myeloid leukemia blasts at diagnosis is prognostic for clinical outcome. J Leukoc Biol. 2011;89(1):51–5.

Article  CAS  PubMed  Google Scholar 

Gregory MA, et al. Targeting glutamine metabolism and redox state for leukemia therapy. Clin Cancer Res. 2019;25(13):4079–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song K, et al. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia. Oncol Lett. 2016;12(1):334–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong K, et al. CS055 (Chidamide/HBI-8000), a novel histone deacetylase inhibitor, induces G1 arrest, ROS-dependent apoptosis and differentiation in human leukaemia cells. Biochem J. 2012;443(3):735–46.

Article  CAS  PubMed  Google Scholar 

Kollinerova S, Vassanelli S, Modriansky M. The role of miR-29 family members in malignant hematopoiesis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014;158(4):489–501.

Article  PubMed  Google Scholar 

Chen Y, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer. 2019;18(1):127.

Article  PubMed  PubMed Central  Google Scholar 

Li Z, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell. 2017;31(1):127–41.

Article  PubMed  Google Scholar 

Ping XL, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24(2):177–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jun HH, et al. Association between TP53 genetic polymorphisms and the methylation and expression of miR-34a, 34b/c in colorectal cancer tissues. Oncol Lett. 2019;17(5):4726–34.

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif