Candidate biomarkers for treatment benefit from sunitinib in patients with advanced renal cell carcinoma using mass spectrometry-based (phospho)proteomics

Fisher RI, Rosenberg SA, Fyfe G. Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am. 2000;6:S55–7.

PubMed  Google Scholar 

McDermott DF, et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol. 2005;23:133–41. https://doi.org/10.1200/Jco.2005.03.206.

Article  CAS  PubMed  Google Scholar 

Motzer RJ, et al. Phase III trial of interferon alfa-2a with or without 13-cis-retinoic acid for patients with advanced renal cell carcinoma. J Clin Oncol. 2000;18:2972–80. https://doi.org/10.1200/Jco.2000.18.16.2972.

Article  CAS  PubMed  Google Scholar 

Negrier S, et al. Recombinant human interleukin-2, recombinant human interferon alfa-2a, or both in metastatic renal-cell carcinoma. New Engl J Med. 1998;338:1272–8. https://doi.org/10.1056/Nejm199804303381805.

Article  CAS  PubMed  Google Scholar 

Hutson TE, et al. Axitinib versus sorafenib in first-line metastatic renal cell carcinoma: overall survival from a randomized phase III trial. Clin Genitourin Canc. 2017;15:72–6. https://doi.org/10.1016/j.clgc.2016.05.008.

Article  Google Scholar 

Konishi S, et al. Comparison of axitinib and sunitinib as first-line therapies for metastatic renal cell carcinoma: a real-world multicenter analysis. Med Oncol. 2019. https://doi.org/10.1007/s12032-018-1231-3.

Article  PubMed  Google Scholar 

Motzer RJ, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. New Engl J Med. 2013;369:722–31. https://doi.org/10.1056/NEJMoa1303989.

Article  CAS  PubMed  Google Scholar 

Schmidinger M, et al. Prospective observational study of Pazopanib in patients with advanced renal cell carcinoma (PRINCIPAL study). Oncologist. 2019;24:491–7. https://doi.org/10.1634/theoncologist.2018-0787.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rini BI, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. New Engl J Med. 2019;380:1116–27. https://doi.org/10.1056/NEJMoa1816714.

Article  CAS  PubMed  Google Scholar 

Motzer RJ, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. New Engl J Med. 2019;380:1103–15. https://doi.org/10.1056/NEJMoa1816047.

Article  CAS  PubMed  Google Scholar 

Klaeger S, et al. The target landscape of clinical kinase drugs. Science. 2017;358:eaan4368. https://doi.org/10.1126/science.aan4368.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Motzer R, et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 2019;20:1370–85. https://doi.org/10.1016/S1470-2045(19)30413-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Motzer RJ, et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27:3584–90. https://doi.org/10.1200/Jco.2008.20.1293.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gore ME, et al. Final results from the large sunitinib global expanded-access trial in metastatic renal cell carcinoma. Brit J Cancer. 2015;113:12–9. https://doi.org/10.1038/bjc.2015.196.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Escudier B, et al. Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(5):706–20. https://doi.org/10.1093/annonc/mdz056.

Article  CAS  PubMed  Google Scholar 

Network, NCC. NCCN clinical practice guidelines in oncology: kidney cancer. Version 3. (2019).

Urology EAo. Renal Cell Carcinoma Guidelines. (2019).

Dudani S, Savard MF, Heng DYC. An update on predictive biomarkers in metastatic renal cell carcinoma. Eur Urol Focus. 2020;6:34–6. https://doi.org/10.1016/j.euf.2019.04.004.

Article  PubMed  Google Scholar 

van der Mijn JC, Mier JW, Broxterman HJ, Verheul HM. Predictive biomarkers in renal cell cancer: insights in drug resistance mechanisms. Drug Resist Updat. 2014;17:77–88. https://doi.org/10.1016/j.drup.2014.10.003.

Article  PubMed  Google Scholar 

Stommel JM, et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007;318:287–90. https://doi.org/10.1126/science.1142946.

Article  CAS  PubMed  Google Scholar 

Fiorentino M, et al. Wide spetcrum mutational analysis of metastatic renal cell cancer: a retrospective next generation sequencing approach. Oncotarget. 2017;8:7328–35. https://doi.org/10.18632/oncotarget.12551.

Article  PubMed  Google Scholar 

Cutillas PR. Role of phosphoproteomics in the development of personalized cancer therapies. Proteom Clin Appl. 2015;9:383–95. https://doi.org/10.1002/prca.201400104.

Article  CAS  Google Scholar 

Clark DJ, et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell. 2019;179:964-983 e931. https://doi.org/10.1016/j.cell.2019.10.007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beekhof R, et al. INKA, an integrative data analysis pipeline for phosphoproteomic inference of active kinases. Mol Syst Biol. 2019;15:e8981. https://doi.org/10.15252/msb.20198981.

Article  PubMed  PubMed Central  Google Scholar 

Labots M, et al. Kinase inhibitor treatment of patients with advanced cancer results in high tumor drug concentrations and in specific alterations of the tumor phosphoproteome. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12020330.

Article  PubMed  Google Scholar 

Rikova K, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1190–203. https://doi.org/10.1016/j.cell.2007.11.025.

Article  CAS  PubMed  Google Scholar 

Zhang H, et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell. 2016;166:755–65. https://doi.org/10.1016/j.cell.2016.05.069.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mertins P, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534:55-+. https://doi.org/10.1038/nature18003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jimenez CR, Verheul HM. Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications. Am Soc Clin Oncol Educ Book. 2014. https://doi.org/10.14694/EdBook_AM.2014.34.e504.

Article  PubMed  Google Scholar 

Olsen JV, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127:635–48. https://doi.org/10.1016/j.cell.2006.09.026.

Article  CAS  PubMed  Google Scholar 

Labots M, et al. Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection. J Proteomics. 2017;162:99–107. https://doi.org/10.1016/j.jprot.2017.04.014.

Article  CAS  PubMed  Google Scholar 

van der Mijn JC, et al. Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics. J Proteomics. 2015;127:259–63. https://doi.org/10.1016/j.jprot.2015.04.006.

Article  CAS  PubMed  Google Scholar 

Piersma SR, et al. Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines. J Proteomics. 2015;127:247–58. https://doi.org/10.1016/j.jprot.2015.03.019.

Article  CAS  PubMed  Google Scholar 

Rush J, et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol. 2005;23:94–101. https://doi.org/10.1038/nbt1046.

Article  CAS  PubMed  Google Scholar 

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72. https://doi.org/10.1038/nbt.1511.

Article  CAS  PubMed  Google Scholar 

Marx H, et al. A large synthetic peptide and phosphopeptide reference library for mass spectrometry-based proteomics. Nat Biotechnol. 2013;31:557-+. https://doi.org/10.1038/nbt.2585.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif