Fisher RI, Rosenberg SA, Fyfe G. Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am. 2000;6:S55–7.
McDermott DF, et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol. 2005;23:133–41. https://doi.org/10.1200/Jco.2005.03.206.
Article CAS PubMed Google Scholar
Motzer RJ, et al. Phase III trial of interferon alfa-2a with or without 13-cis-retinoic acid for patients with advanced renal cell carcinoma. J Clin Oncol. 2000;18:2972–80. https://doi.org/10.1200/Jco.2000.18.16.2972.
Article CAS PubMed Google Scholar
Negrier S, et al. Recombinant human interleukin-2, recombinant human interferon alfa-2a, or both in metastatic renal-cell carcinoma. New Engl J Med. 1998;338:1272–8. https://doi.org/10.1056/Nejm199804303381805.
Article CAS PubMed Google Scholar
Hutson TE, et al. Axitinib versus sorafenib in first-line metastatic renal cell carcinoma: overall survival from a randomized phase III trial. Clin Genitourin Canc. 2017;15:72–6. https://doi.org/10.1016/j.clgc.2016.05.008.
Konishi S, et al. Comparison of axitinib and sunitinib as first-line therapies for metastatic renal cell carcinoma: a real-world multicenter analysis. Med Oncol. 2019. https://doi.org/10.1007/s12032-018-1231-3.
Motzer RJ, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. New Engl J Med. 2013;369:722–31. https://doi.org/10.1056/NEJMoa1303989.
Article CAS PubMed Google Scholar
Schmidinger M, et al. Prospective observational study of Pazopanib in patients with advanced renal cell carcinoma (PRINCIPAL study). Oncologist. 2019;24:491–7. https://doi.org/10.1634/theoncologist.2018-0787.
Article CAS PubMed PubMed Central Google Scholar
Rini BI, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. New Engl J Med. 2019;380:1116–27. https://doi.org/10.1056/NEJMoa1816714.
Article CAS PubMed Google Scholar
Motzer RJ, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. New Engl J Med. 2019;380:1103–15. https://doi.org/10.1056/NEJMoa1816047.
Article CAS PubMed Google Scholar
Klaeger S, et al. The target landscape of clinical kinase drugs. Science. 2017;358:eaan4368. https://doi.org/10.1126/science.aan4368.
Article CAS PubMed PubMed Central Google Scholar
Motzer R, et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 2019;20:1370–85. https://doi.org/10.1016/S1470-2045(19)30413-9.
Article CAS PubMed PubMed Central Google Scholar
Motzer RJ, et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27:3584–90. https://doi.org/10.1200/Jco.2008.20.1293.
Article CAS PubMed PubMed Central Google Scholar
Gore ME, et al. Final results from the large sunitinib global expanded-access trial in metastatic renal cell carcinoma. Brit J Cancer. 2015;113:12–9. https://doi.org/10.1038/bjc.2015.196.
Article CAS PubMed PubMed Central Google Scholar
Escudier B, et al. Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(5):706–20. https://doi.org/10.1093/annonc/mdz056.
Article CAS PubMed Google Scholar
Network, NCC. NCCN clinical practice guidelines in oncology: kidney cancer. Version 3. (2019).
Urology EAo. Renal Cell Carcinoma Guidelines. (2019).
Dudani S, Savard MF, Heng DYC. An update on predictive biomarkers in metastatic renal cell carcinoma. Eur Urol Focus. 2020;6:34–6. https://doi.org/10.1016/j.euf.2019.04.004.
van der Mijn JC, Mier JW, Broxterman HJ, Verheul HM. Predictive biomarkers in renal cell cancer: insights in drug resistance mechanisms. Drug Resist Updat. 2014;17:77–88. https://doi.org/10.1016/j.drup.2014.10.003.
Stommel JM, et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007;318:287–90. https://doi.org/10.1126/science.1142946.
Article CAS PubMed Google Scholar
Fiorentino M, et al. Wide spetcrum mutational analysis of metastatic renal cell cancer: a retrospective next generation sequencing approach. Oncotarget. 2017;8:7328–35. https://doi.org/10.18632/oncotarget.12551.
Cutillas PR. Role of phosphoproteomics in the development of personalized cancer therapies. Proteom Clin Appl. 2015;9:383–95. https://doi.org/10.1002/prca.201400104.
Clark DJ, et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell. 2019;179:964-983 e931. https://doi.org/10.1016/j.cell.2019.10.007.
Article CAS PubMed PubMed Central Google Scholar
Beekhof R, et al. INKA, an integrative data analysis pipeline for phosphoproteomic inference of active kinases. Mol Syst Biol. 2019;15:e8981. https://doi.org/10.15252/msb.20198981.
Article PubMed PubMed Central Google Scholar
Labots M, et al. Kinase inhibitor treatment of patients with advanced cancer results in high tumor drug concentrations and in specific alterations of the tumor phosphoproteome. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12020330.
Rikova K, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1190–203. https://doi.org/10.1016/j.cell.2007.11.025.
Article CAS PubMed Google Scholar
Zhang H, et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell. 2016;166:755–65. https://doi.org/10.1016/j.cell.2016.05.069.
Article CAS PubMed PubMed Central Google Scholar
Mertins P, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534:55-+. https://doi.org/10.1038/nature18003.
Article CAS PubMed PubMed Central Google Scholar
Jimenez CR, Verheul HM. Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications. Am Soc Clin Oncol Educ Book. 2014. https://doi.org/10.14694/EdBook_AM.2014.34.e504.
Olsen JV, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127:635–48. https://doi.org/10.1016/j.cell.2006.09.026.
Article CAS PubMed Google Scholar
Labots M, et al. Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection. J Proteomics. 2017;162:99–107. https://doi.org/10.1016/j.jprot.2017.04.014.
Article CAS PubMed Google Scholar
van der Mijn JC, et al. Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics. J Proteomics. 2015;127:259–63. https://doi.org/10.1016/j.jprot.2015.04.006.
Article CAS PubMed Google Scholar
Piersma SR, et al. Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines. J Proteomics. 2015;127:247–58. https://doi.org/10.1016/j.jprot.2015.03.019.
Article CAS PubMed Google Scholar
Rush J, et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol. 2005;23:94–101. https://doi.org/10.1038/nbt1046.
Article CAS PubMed Google Scholar
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72. https://doi.org/10.1038/nbt.1511.
Article CAS PubMed Google Scholar
Marx H, et al. A large synthetic peptide and phosphopeptide reference library for mass spectrometry-based proteomics. Nat Biotechnol. 2013;31:557-+. https://doi.org/10.1038/nbt.2585.
Comments (0)