O. H. Petersen, M. Michalak, and A. Verkhratsky, “Calcium signalling: past, present and future,” Cell Calcium, 38, No. 3−4, 161–169 (2005); doi: https://doi.org/10.1016/j.ceca.2005.06.023.
Article PubMed CAS Google Scholar
A. Verkhratsky, “Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons,” Physiol. Rev., 85, No. 1, 201–279 (2005); doi: https://doi.org/10.1152/physrev.00004.2004.
Article PubMed CAS Google Scholar
D. D. Friel and R. W. Tsien, “A caffeine- and ryano- dine-sensitive Ca2+ store in bullfrog sympathetic neurones modulates effects of Ca2+ entry on [Ca2+] i.,” J. Physiol., 450, 217–246 (1992); doi: https://doi.org/10.1113/jphysiol.1992.sp019125.
Article PubMed PubMed Central CAS Google Scholar
N. Solovyova, N. Veselovsky, E. C. Toescu, and A. Ver- khratsky, “ Ca2+ dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca2+-induced Ca2+ release triggered by physiological Ca2+ entry,” EMBO J., 21, No. 4, 622−630 (2002); doi: https://doi.org/10.1093/emboj/21.4.622.
A. S. Cohen, K. A. Moore, R. Bangalore, et al., “Ca2+- induced Ca2+ release mediates Ca2+ transients evoked by single action potentials in rabbit vagal afferent neurones,” J. Physiol., 499, Pt. 2, 315−328 (1997); doi: https://doi.org/10.1113/jphysiol.1997.sp021929.
Article PubMed PubMed Central CAS Google Scholar
Y. M. Usachev and S. A. Thayer, “All-or-none Ca2+ release from intracellular stores triggered by Ca2+ influx through voltage-gated Ca2+ channels in rat sensory neurons,” J. Neurosci., 17, No. 19, 7404−7414 (1997); doi: https://doi.org/10.1523/JNEUROSCI.17-19-07404.1997.
Article PubMed PubMed Central CAS Google Scholar
L. Fierro, R. DiPolo, and L. Llano, “Intracellular calcium clearance in Purkinje cell somata from rat cerebellar slices,” J. Physiol. 510, Pt. 2, 499−512 (1998); doi: https://doi.org/10.1111/j.1469-7793.1998.499bk.x.
Article PubMed PubMed Central CAS Google Scholar
B. L. Sabatini, T. G. Oertner, and K. Svoboda, “The life cycle of Ca2+ ions in dendritic spines,” Neuron, 33, No. 3, 439–452 (2002); doi: https://doi.org/10.1016/s0896-6273(02)00573-1.
Article PubMed CAS Google Scholar
T. Akita and K. Kuba, “Functional triads consisting of ryanodine receptors, Ca2+ channels, and Ca2+-activated K+ channels in bullfrog sympathetic neurons. Plastic modulation of action potential,” J. Gen. Physiol., 116, No. 5, 697−720 (2000); doi: https://doi.org/10.1085/jgp.116.5.697.
Article PubMed PubMed Central CAS Google Scholar
D. Gall, F. Prestori, E. Sola, et al., “Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage,” J. Neurosci., 25, No. 19, 4813–4822 (2005); doi: https://doi.org/10.1523/JNEUROSCI.0410-05.2005.
Article PubMed PubMed Central CAS Google Scholar
S. Alford, B. G. Frenguelli, J. G. Schofield, and G. L. Collingridge, “Characterization of Ca2+ signals induced in hippocampal CA1 neurons by the synaptic activation of NMDA receptors,” J. Physiol., 469, 693– 716 (1993); doi: https://doi.org/10.1113/jphysiol.1993.sp019838.
Article PubMed PubMed Central CAS Google Scholar
Y. Liang, L. L. Yuan, D. Johnston, and R. Gray, “Calcium signaling at single mossy fiber presynaptic terminals in the rat hippocampus,” J. Neurophysiol., 87, No. 2, 1132−1137 (2002); doi: https://doi.org/10.1152/jn.00661.2001.
Article PubMed CAS Google Scholar
T. Szikra and D. Križaj, “Intracellular organelles and calcium homeostasis in rods and cones,” Vis. Neurosci., 24, No. 5, 733−743 (2007); doi: https://doi.org/10.1017/S0952523807070587.
Article PubMed PubMed Central Google Scholar
V. M. Sandler and J. G. Barbara, “Calcium-induced calcium release contributes to action-potential evoked calcium transients in hippocampal CA1 pyramidal neurons,” J. Neurosci., 19, No. 11, 4325–4336 (1999); doi: https://doi.org/10.1523/JNEUROSCI.19-11-04325.1999.
Article PubMed PubMed Central CAS Google Scholar
F. Helmchen, K. Imoto, and B. Sakmann, “Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons,” Biophys. J., 70, No. 2, 1069–1081 (1996); doi: https://doi.org/10.1016/S0006-3495(96)79653-4.
Article PubMed PubMed Central CAS Google Scholar
D. W. Tank, W. G. Regehr, and K. R. Delaney, “A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement,” J. Neurosci., 15, No. 12, 7940–7952 (1995); doi: https://doi.org/10.1523/JNEUROSCI.15-12-07940.1995.
Article PubMed PubMed Central CAS Google Scholar
M. A. Albrecht, S. L. Colegrove, J. Hongpaisan, et al., “Multiple modes of calcium-induced calcium release in sympathetic neurons I: attenuation of endoplasmic reticulum Ca2+ accumulation at low [Ca2+] during weak depolarization,” J. Gen. Physiol., 118, No. 1, 83−100 (2001); doi: https://doi.org/10.1085/jgp.118.1.83.
Article PubMed PubMed Central CAS Google Scholar
M. A. Albrecht, S. L. Colegrove, and D. D. Friel, “Dif- ferential regulation of ER Ca2+ uptake and release rates accounts for multiple modes of Ca2+-induced Ca2+ release,” J. Gen. Physiol., 119, No. 3, 211–233 (2002); doi: https://doi.org/10.1085/jgp.20028484.
Article PubMed PubMed Central CAS Google Scholar
S. D. Brenowitz and W. G. Regehr, “Reliability and heterogeneity of calcium signaling at single pre- synaptic boutons of cerebellar granule cells,” J. Neurosci., 27, No. 30, 7888–7898 (2007); doi: https://doi.org/10.1523/JNEUROSCI.1064-07.2007.
Article PubMed PubMed Central CAS Google Scholar
S. L. Colegrove, M. A. Albrecht, and D. D. Friel, “Quantitative analysis of mitochondrial Ca2+ uptake and release pathways in sympathetic neurons. Reconstruction of the recovery after depolarization-evoked [Ca2+] elevations,” J. Gen. Physiol., 115, No. 3, 371–388 (2000); doi: https://doi.org/10.1085/jgp.115.3.371.
Article PubMed PubMed Central CAS Google Scholar
T. Xu, M. Naraghi, H. Kang, and E Neher, “Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells,” Biophys. J., 73, No. 1, 532–545 (1997); doi: https://doi.org/10.1016/S0006-3495(97)78091-3.
Article PubMed PubMed Central CAS Google Scholar
M.-H. Kim, N. Korogod, R. Schneggenburger, et al. “Interplay between Na+/Ca2+ exchangers and mito- chondria in Ca2+ clearance at the calyx of Held,” J. Neurosci., 25, No. 26, 6057−6065 (2005); doi: https://doi.org/10.1523/JNEUROSCI.0454-05.2005.
Article PubMed PubMed Central CAS Google Scholar
M. Patterson, J. Sneyd, and D. D. Friel, “Depolarization- induced calcium responses in sympathetic neurons: relative contributions from Ca2+ entry, extrusion, ER/mitochondrial Ca2+ uptake and release, and Ca2+ buffering,” J. Gen. Physiol., 129, No. 1, 29−56 (2007); doi: https://doi.org/10.1085/jgp.200609660.
Article PubMed PubMed Central CAS Google Scholar
E. D’Angelo, T. Nieus, A. Maffei, et al. “Theta- frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow K+-dependent mechanism,” J. Neurosci., 21 , No. 3 , 759 – 770 ( 2001 ) ; doi: https://doi.org/10.1523/JNEUROSCI.21-03-00759.2001.
Article PubMed PubMed Central Google Scholar
J. Liou, M. Fivaz, T. Inoue, and T. Meyer, “Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion,” Proc. Natl. Acad. Sci. USA, 104, No. 22, 9301−9306 (2007); doi: https://doi.org/10.1073/pnas.0702866104.
Article PubMed PubMed Central CAS Google Scholar
M. Maravall, Z. F. Mainen, B. L. Sabatini, and K Svo- boda, “Estimating intracellular calcium concentrations and buffering without wavelength rationing,” Biophys. J., 78, No. 5, 2655−2667 (2000); doi: https://doi.org/10.1016/S0006-3495(00)76809-3.
T. Akita and K. Kuba, “Ca2+-dependent inactivation of Ca2+-induced Ca2+ release in bullfrog sympathetic neurons,” J. Physiol., 586, 3365−3384 (2008); doi: https://doi.org/10.1113/jphysiol.2008.153833.
Article PubMed PubMed Central CAS Google Scholar
M. L. Hines and N. T. Carnevale, “The NEURON simulation environment,” Neural Comput., 9, No. 6, 1179–1209 (1997); doi: https://doi.org/10.1162/neco.1997.9.6.1179.
Article PubMed CAS Google Scholar
F. Helmchen and D. W. Tank, “A single-compartment model of calcium dynamics in nerve terminals and dendrites,” Cold Spring Harb. Protoc., 2015, No. 2, 155−167 (2015); doi: https://doi.org/10.1101/pdb.top085910.
J. Klingauf and E. Neher, “Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells,” Biophys. J. 72, No. 2, Pt. 1, 674–690 (1997); doi: https://doi.org/10.1016/s0006-3495(97)78704-6.
S. P. Robertson, J. D. Johnson, and J. D. Potter, “The time course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+,” Biophys. J., 34, No. 3, 559–569 (1981); doi: https://doi.org/10.1016/S0006-3495(81)84868-0.
Article PubMed PubMed Central CAS Google Scholar
M. Naraghi and E. Neher, “Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel,” J. Neurosci., 1
Comments (0)