P. Aagaard, E. B. Simonsen, J. L. Andersen, et al., “Increased rate of force development and neural drive of human skeletal muscle following resistance training,” J. Appl. Physiol., 93, No. 4, 1318–1326 (2002); https://doi.org/10.1152/japplphysiol.00283.2002.
L. L. Andersen and P. Aagaard, “Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development,” Eur. J. Appl. Physiol., 96, No. 1, 46–52 (2006); https://doi.org/10.1007/s00421-005-0070-z.
K. H. Gerrits, M. J. Beltman, P. A. Koppe, et al., “Isometric muscle function of knee extensors and the relation with functional performance in patients with stroke,” Arch. Phys. Med. Rehabil., 90, No. 3, 480–487 (2009); https://doi.org/10.1016/j.apmr.2008.09.562.
J. D. Winters and K. S. Rudolph, “Quadriceps rate of force development affects gait and function in people with knee osteoarthritis,” Eur. J. Appl. Physiol., 114, No.2, 273–284 (2014); https://doi.org/10.1007/s00421-013-2759-8.
K. Takeda, S. Tanabe, S. Koyama, et al., “Intra- and interrater reliability of the rate of force development of hip abductor muscles measured by handheld dynamometer,” Meas. Phys. Educ. Exer. Sci., 22, No. 1, 19–24 (2018); https://doi.org/10.1080/1091367X.2017.1365078.
C. Del Balso and E. Cafarelli, “Adaptations in the activation of human skeletal muscle induced by short-term isometric resistance training,” J. Appl. Physiol., 103. No. 1, 402–411 (2007); https://doi.org/10.1152/japplphysiol.00477.2006.
S. S. Geertsen, J. Lundbye-Jensen, and J. B. Nielsen, “Increased central facilitation of antagonist reciprocal inhibition at the onset of dorsiflexion following explosive strength training,” J.. Appl. Physiol. (1985), 105, No. 3, 915–922 (2008); https://doi.org/10.1152/japplphysiol.01155.2007.
N. A. Tillin and J. P. Folland, “Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus,” Eur. J. Appl. Physiol., 114, No. 2, 365–374 (2014); https://doi.org/10.1007/s00421-013-2781-x.
K. Häkkinen, M. Alen, W. J. Kraemer, et al., “Neuromuscular adaptations during concurrent strength and endurance training versus strength training,” Eur. J. Appl. Physiol., 89, No. 1, 42–52 (2003); https://doi.org/10.1007/s00421-002-0751-9.
A. Holtermann, K. Roeleveld, M. Engstrøm, and T. Sand, “Enhanced H-reflex with resistance training is related to increased rate of force development,” Eur. J. Appl. Physiol., 101, No. 3, 301–312 (2007); https://doi.org/10.1007/s00421-007-0503-y.
C. Suetta, P. Aagaard, A. Rosted, et al., “Traininginduced changes in muscle CSA, muscle strength, EMG, and rate of force development in elderly subjects after long-term unilateral disuse,” J. Appl. Physiol., 97, No. 5, 1954–1961 (2004); https://doi.org/10.1152/japplphysiol.01307.2003.
C. Vila-Chã, D. Falla, and D. Farina, “Motor unit behavior during sub-maximal contractions following six weeks of either endurance or strength training,” J. Appl. Physiol. (1985), 109, No. 5, 1455–1466 (2010); https://doi.org/10.1152/japplphysiol.01213.2009.
K. Takeda, S. Tanabe, S. Koyama, et al., “The short-term effects of low-load isometric resistance training by the addition of neuromuscular electrical stimulation on the rate of force development in hip abductor muscles,” Physiother. Pract. Res., 41, No. 1, 3–9 (2020); https://doi.org/10.3233/PPR-190140.
J. Fink, N. Kikuchi, S. Yoshida, et al., “Impact of high versus low fixed loads and non-linear training loads on muscle hypertrophy, strength and force development,” SpringerPlus, 5, No. 1, 1–8 (2016); https://doi.org/10.1186/s40064-016-2333-z.
O. Lagerquist, C. S. Mang, and D. F. Collins, “Changes in spinal but not cortical excitability following combined electrical stimulation of the tibial nerve and voluntary plantar-flexion,” Exp. Brain. Res., 222, No. 1– 2, 41–53 (2012); doi: https://doi.org/10.1007/s00221-012-3194-5.
S. Koyama, S. Tanabe, K. Takeda, et al.,“Modulation of spinal inhibitory reflexes depends on the frequency of transcutaneous electrical nerve stimulation in spastic stroke survivors,” Somatosens. Mot. Res., 33, No. 1, 8–15 (2016); doi:https://doi.org/10.3109/08990220.2016.1142436.
K. Takeda, S. Tanabe, S. Koyama, et al., “Influence of transcutaneous electrical nerve stimulation conditions on disynaptic reciprocal Ia inhibition and presynaptic inhibition in healthy adults,” Somatosens. Mot. Res., 34, No. 1, 52–57 (2017); doi: https://doi.org/10.1080/08990220.2017.1286311.
N. D. Jenkins, T. J. Housh, S. L Buckner, et al., “Four weeks of high- versus low-load resistance training to failure on the rate of torque development, electromechanical delay, and contractile twitch properties,” J. Musculoskelet. Neuronal Interact., 16, No. 2, 135–144 (2016).
PubMed PubMed Central Google Scholar
D. F. Collins, “Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation,” Exerc. Sport Sci. Rev., 35, No. 3, 102–109 (2007); doi: https://doi.org/10.1097/jes.0b013e3180a0321b.
O. Lagerquist and D. F. Collins, “Influence of stimulus pulse width on M-waves, H-reflexes, and torque during tetanic low-intensity neuromuscular stimulation,” Muscle Nerve, 42, No. 6, 886–893 (2010); doi: https://doi.org/10.1002/mus.21762.
K. Takeda, S. Koyama, K. Shomoto, et al., “Modulation of the rate of force development in the hip abductor muscles by neuromuscular electrical stimulation during gait,” Somatosens. Mot. Res., 37, No.1, 1–5 (2020); doi: https://doi.org/10.1080/08990220.2019.1693357.
S. Koyama, S. Tanabe, T. Ishikawa, et al., “Timedependent effects of neuromuscular electrical stimulation on changes in spinal excitability are dependent on stimulation frequency: a preliminary study in healthy adults,” Somatosens. Mot. Res., 31, No. 4, 221–226 (2014); doi: https://doi.org/10.3109/08990220.2014.931279.
K. Takeda, S. Koyama, K. Shomoto, et al., “The effect of gait training with low-intensity neuromuscular electrical stimulation of hip abductor muscles in two patients following surgery for hip fracture: Two case reports,” Physiother. Theor. Pract., 38, No. 10, 1553–1563 (2022); doi: https://doi.org/10.1080/09593985.2020.1864798.
N. A. Maffiuletti, M. Bizzini, K. Widler, and U. Munzinger, “Asymmetry in quadriceps rate of force development as a functional outcome measure in TKA,” Clin. Orthop. Relat. Res., 468, No. 1, 191–198 (2010); doi: https://doi.org/10.1007/s11999-009-0978-4.
B. F. Mentiplay, L. G. Perraton, K. J. Bower, et al., “Assessment of lower limb muscle strength and power using hand-held and fixed dynamometry: A reliability and validity study,” PLoS One, 10, No. 10, e0140822 (2015); doi: https://doi.org/10.1371/journal.pone.0140822.
K. Takeda, S. Tanabe, S. Koyama, et al., “Relationship between the rate of force development in knee extensor muscles and gait speed in patients with chronic stroke: a cross-sectional study,” NeuroRehabilitation, 43, No. 4, 425–430 (2018): doi: https://doi.org/10.3233/NRE-182455.
K. Funase, T. Higashi, T. Yoshimura, et al., “Evident difference in the excitability of the motoneuron pool between normal subjects and patients with spasticity assessed by a new method using H-reflex and M-response,” Neurosci. Let., 203, No. 2, 127–130 (1996); doi: https://doi.org/10.1016/0304-3940(95)12284-2.
T. Higashi, K. Funase, K. Kusano, et al., “Motoneuron pool excitability of hemiplegic patients: assessing recovery stages by using H-reflex and M response,” Arch. Phys. Med. Rehabil., 82, No. 11, 1604–1610 (2001); doi: https://doi.org/10.1053/apmr.2001.25081.
Article CAS PubMed Google Scholar
M.J. Sabatier, W. Wedewer, B. Barton, et al., “Slope walking causes short-term changes in soleus H-reflex excitability,” Physiolog. Rep., 3, No.3, e12308 (2015); doi: https://doi.org/10.14814/phy2.12308.
G. I. Barsi, D. B. Popovic, I. M Tarkka, et al., “Cortical excitability changes following grasping exercise augmented with electrical stimulation,” Exp. Brain Res., 191, No. 1, 57–66 (2008); doi: https://doi.org/10.1007/s00221-008-1495-5.
S. Khaslavskaia and T. Sinkjaer, “Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive,” Exp. Brain Res., 162, No. 4, 497–502 (2005); doi: https://doi.org/10.1007/s00221-004-2153-1.
K. Sugawara, T. Yamaguchi, S. Tanabe, et al., “Timedependent changes in motor cortical excitability by electrical stimulation combined with voluntary drive,” NeuroReport, 25, No. 6, 404–409 (2014); doi: https://doi.org/10.1097/WNR.0000000000000108.
T. Yamaguchi, K. Sugawara, S. Tanaka, et al., “Real-time changes in corticospinal excitability during voluntary contraction with concurrent electrical stimulation,” PloS One, 7, No. 9, e46122 (2012), doi: https://doi.org/10.1371/journal.pone.0046122
M. J. Falvo, E. J. Sirevaag, J. W. Rohrbaugh, and G. M. Earhart, “Resistance training induces supraspinal adaptations: evidence from movement-related cortical potentials. European,” J. Appl. Physiol., 109, No. 5, 923–933 (2010); doi: https://doi.org/10.1007/s00421-010-1432-8.
A. J. Pearce, A. Hendy, W. A. Bowen, and D. J. Kidgell, “Corticospinal adaptations and strength maintenance in the immobilized arm following 3 weeks unilateral strength training,” Scand. J. Med. Sci. Sports, 23, No. 6, 740–748 (2013); doi: https://doi.org/10.1111/j.1600-0838.2012.01453.x.
Comments (0)