Synergic Effect of Isometric Resistance Training and Subthreshold Electrical Neuromuscular Stimulation on the Excitability of Spinal Motoneurons in Humans

P. Aagaard, E. B. Simonsen, J. L. Andersen, et al., “Increased rate of force development and neural drive of human skeletal muscle following resistance training,” J. Appl. Physiol., 93, No. 4, 1318–1326 (2002); https://doi.org/10.1152/japplphysiol.00283.2002.

Article  PubMed  Google Scholar 

L. L. Andersen and P. Aagaard, “Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development,” Eur. J. Appl. Physiol., 96, No. 1, 46–52 (2006); https://doi.org/10.1007/s00421-005-0070-z.

Article  PubMed  Google Scholar 

K. H. Gerrits, M. J. Beltman, P. A. Koppe, et al., “Isometric muscle function of knee extensors and the relation with functional performance in patients with stroke,” Arch. Phys. Med. Rehabil., 90, No. 3, 480–487 (2009); https://doi.org/10.1016/j.apmr.2008.09.562.

Article  PubMed  Google Scholar 

J. D. Winters and K. S. Rudolph, “Quadriceps rate of force development affects gait and function in people with knee osteoarthritis,” Eur. J. Appl. Physiol., 114, No.2, 273–284 (2014); https://doi.org/10.1007/s00421-013-2759-8.

Article  PubMed  Google Scholar 

K. Takeda, S. Tanabe, S. Koyama, et al., “Intra- and interrater reliability of the rate of force development of hip abductor muscles measured by handheld dynamometer,” Meas. Phys. Educ. Exer. Sci., 22, No. 1, 19–24 (2018); https://doi.org/10.1080/1091367X.2017.1365078.

Article  Google Scholar 

C. Del Balso and E. Cafarelli, “Adaptations in the activation of human skeletal muscle induced by short-term isometric resistance training,” J. Appl. Physiol., 103. No. 1, 402–411 (2007); https://doi.org/10.1152/japplphysiol.00477.2006.

Article  PubMed  Google Scholar 

S. S. Geertsen, J. Lundbye-Jensen, and J. B. Nielsen, “Increased central facilitation of antagonist reciprocal inhibition at the onset of dorsiflexion following explosive strength training,” J.. Appl. Physiol. (1985), 105, No. 3, 915–922 (2008); https://doi.org/10.1152/japplphysiol.01155.2007.

N. A. Tillin and J. P. Folland, “Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus,” Eur. J. Appl. Physiol., 114, No. 2, 365–374 (2014); https://doi.org/10.1007/s00421-013-2781-x.

Article  PubMed  Google Scholar 

K. Häkkinen, M. Alen, W. J. Kraemer, et al., “Neuromuscular adaptations during concurrent strength and endurance training versus strength training,” Eur. J. Appl. Physiol., 89, No. 1, 42–52 (2003); https://doi.org/10.1007/s00421-002-0751-9.

Article  PubMed  Google Scholar 

A. Holtermann, K. Roeleveld, M. Engstrøm, and T. Sand, “Enhanced H-reflex with resistance training is related to increased rate of force development,” Eur. J. Appl. Physiol., 101, No. 3, 301–312 (2007); https://doi.org/10.1007/s00421-007-0503-y.

Article  PubMed  Google Scholar 

C. Suetta, P. Aagaard, A. Rosted, et al., “Traininginduced changes in muscle CSA, muscle strength, EMG, and rate of force development in elderly subjects after long-term unilateral disuse,” J. Appl. Physiol., 97, No. 5, 1954–1961 (2004); https://doi.org/10.1152/japplphysiol.01307.2003.

Article  PubMed  Google Scholar 

C. Vila-Chã, D. Falla, and D. Farina, “Motor unit behavior during sub-maximal contractions following six weeks of either endurance or strength training,” J. Appl. Physiol. (1985), 109, No. 5, 1455–1466 (2010); https://doi.org/10.1152/japplphysiol.01213.2009.

K. Takeda, S. Tanabe, S. Koyama, et al., “The short-term effects of low-load isometric resistance training by the addition of neuromuscular electrical stimulation on the rate of force development in hip abductor muscles,” Physiother. Pract. Res., 41, No. 1, 3–9 (2020); https://doi.org/10.3233/PPR-190140.

Article  Google Scholar 

J. Fink, N. Kikuchi, S. Yoshida, et al., “Impact of high versus low fixed loads and non-linear training loads on muscle hypertrophy, strength and force development,” SpringerPlus, 5, No. 1, 1–8 (2016); https://doi.org/10.1186/s40064-016-2333-z.

Article  Google Scholar 

O. Lagerquist, C. S. Mang, and D. F. Collins, “Changes in spinal but not cortical excitability following combined electrical stimulation of the tibial nerve and voluntary plantar-flexion,” Exp. Brain. Res., 222, No. 1– 2, 41–53 (2012); doi: https://doi.org/10.1007/s00221-012-3194-5.

Article  PubMed  Google Scholar 

S. Koyama, S. Tanabe, K. Takeda, et al.,“Modulation of spinal inhibitory reflexes depends on the frequency of transcutaneous electrical nerve stimulation in spastic stroke survivors,” Somatosens. Mot. Res., 33, No. 1, 8–15 (2016); doi:https://doi.org/10.3109/08990220.2016.1142436.

Article  PubMed  Google Scholar 

K. Takeda, S. Tanabe, S. Koyama, et al., “Influence of transcutaneous electrical nerve stimulation conditions on disynaptic reciprocal Ia inhibition and presynaptic inhibition in healthy adults,” Somatosens. Mot. Res., 34, No. 1, 52–57 (2017); doi: https://doi.org/10.1080/08990220.2017.1286311.

Article  PubMed  Google Scholar 

N. D. Jenkins, T. J. Housh, S. L Buckner, et al., “Four weeks of high- versus low-load resistance training to failure on the rate of torque development, electromechanical delay, and contractile twitch properties,” J. Musculoskelet. Neuronal Interact., 16, No. 2, 135–144 (2016).

PubMed  PubMed Central  Google Scholar 

D. F. Collins, “Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation,” Exerc. Sport Sci. Rev., 35, No. 3, 102–109 (2007); doi: https://doi.org/10.1097/jes.0b013e3180a0321b.

Article  PubMed  Google Scholar 

O. Lagerquist and D. F. Collins, “Influence of stimulus pulse width on M-waves, H-reflexes, and torque during tetanic low-intensity neuromuscular stimulation,” Muscle Nerve, 42, No. 6, 886–893 (2010); doi: https://doi.org/10.1002/mus.21762.

Article  PubMed  Google Scholar 

K. Takeda, S. Koyama, K. Shomoto, et al., “Modulation of the rate of force development in the hip abductor muscles by neuromuscular electrical stimulation during gait,” Somatosens. Mot. Res., 37, No.1, 1–5 (2020); doi: https://doi.org/10.1080/08990220.2019.1693357.

Article  PubMed  Google Scholar 

S. Koyama, S. Tanabe, T. Ishikawa, et al., “Timedependent effects of neuromuscular electrical stimulation on changes in spinal excitability are dependent on stimulation frequency: a preliminary study in healthy adults,” Somatosens. Mot. Res., 31, No. 4, 221–226 (2014); doi: https://doi.org/10.3109/08990220.2014.931279.

Article  PubMed  Google Scholar 

K. Takeda, S. Koyama, K. Shomoto, et al., “The effect of gait training with low-intensity neuromuscular electrical stimulation of hip abductor muscles in two patients following surgery for hip fracture: Two case reports,” Physiother. Theor. Pract., 38, No. 10, 1553–1563 (2022); doi: https://doi.org/10.1080/09593985.2020.1864798.

Article  Google Scholar 

N. A. Maffiuletti, M. Bizzini, K. Widler, and U. Munzinger, “Asymmetry in quadriceps rate of force development as a functional outcome measure in TKA,” Clin. Orthop. Relat. Res., 468, No. 1, 191–198 (2010); doi: https://doi.org/10.1007/s11999-009-0978-4.

Article  PubMed  Google Scholar 

B. F. Mentiplay, L. G. Perraton, K. J. Bower, et al., “Assessment of lower limb muscle strength and power using hand-held and fixed dynamometry: A reliability and validity study,” PLoS One, 10, No. 10, e0140822 (2015); doi: https://doi.org/10.1371/journal.pone.0140822.

Article  CAS  Google Scholar 

K. Takeda, S. Tanabe, S. Koyama, et al., “Relationship between the rate of force development in knee extensor muscles and gait speed in patients with chronic stroke: a cross-sectional study,” NeuroRehabilitation, 43, No. 4, 425–430 (2018): doi: https://doi.org/10.3233/NRE-182455.

Article  PubMed  Google Scholar 

K. Funase, T. Higashi, T. Yoshimura, et al., “Evident difference in the excitability of the motoneuron pool between normal subjects and patients with spasticity assessed by a new method using H-reflex and M-response,” Neurosci. Let., 203, No. 2, 127–130 (1996); doi: https://doi.org/10.1016/0304-3940(95)12284-2.

Article  CAS  Google Scholar 

T. Higashi, K. Funase, K. Kusano, et al., “Motoneuron pool excitability of hemiplegic patients: assessing recovery stages by using H-reflex and M response,” Arch. Phys. Med. Rehabil., 82, No. 11, 1604–1610 (2001); doi: https://doi.org/10.1053/apmr.2001.25081.

Article  CAS  PubMed  Google Scholar 

M.J. Sabatier, W. Wedewer, B. Barton, et al., “Slope walking causes short-term changes in soleus H-reflex excitability,” Physiolog. Rep., 3, No.3, e12308 (2015); doi: https://doi.org/10.14814/phy2.12308.

G. I. Barsi, D. B. Popovic, I. M Tarkka, et al., “Cortical excitability changes following grasping exercise augmented with electrical stimulation,” Exp. Brain Res., 191, No. 1, 57–66 (2008); doi: https://doi.org/10.1007/s00221-008-1495-5.

Article  PubMed  Google Scholar 

S. Khaslavskaia and T. Sinkjaer, “Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive,” Exp. Brain Res., 162, No. 4, 497–502 (2005); doi: https://doi.org/10.1007/s00221-004-2153-1.

Article  PubMed  Google Scholar 

K. Sugawara, T. Yamaguchi, S. Tanabe, et al., “Timedependent changes in motor cortical excitability by electrical stimulation combined with voluntary drive,” NeuroReport, 25, No. 6, 404–409 (2014); doi: https://doi.org/10.1097/WNR.0000000000000108.

Article  PubMed  Google Scholar 

T. Yamaguchi, K. Sugawara, S. Tanaka, et al., “Real-time changes in corticospinal excitability during voluntary contraction with concurrent electrical stimulation,” PloS One, 7, No. 9, e46122 (2012), doi: https://doi.org/10.1371/journal.pone.0046122

Article  CAS  Google Scholar 

M. J. Falvo, E. J. Sirevaag, J. W. Rohrbaugh, and G. M. Earhart, “Resistance training induces supraspinal adaptations: evidence from movement-related cortical potentials. European,” J. Appl. Physiol., 109, No. 5, 923–933 (2010); doi: https://doi.org/10.1007/s00421-010-1432-8.

Article  Google Scholar 

A. J. Pearce, A. Hendy, W. A. Bowen, and D. J. Kidgell, “Corticospinal adaptations and strength maintenance in the immobilized arm following 3 weeks unilateral strength training,” Scand. J. Med. Sci. Sports, 23, No. 6, 740–748 (2013); doi: https://doi.org/10.1111/j.1600-0838.2012.01453.x.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif