Changes in the Levels of Neurospecific Proteins and Indices of Apoptosis in the Rat Cornea at Chronic Ethanol Consumption: Protective Effects of Thiamine Administration

B. S. Shaheen, M. Bakir, and S. Jain, “Corneal nerves in health and disease,” Surv. Ophthalmol., 59, No. 3, 263–285 (2014); doi:https://doi.org/10.1016/j.survophthal.2013.09.002.

Article  PubMed  PubMed Central  Google Scholar 

G. Guidoboni, R. Sacco, M. Szopos, et al., “Neurodegenerative disorders of the eye and of the brain: A perspective on their fluid-dynamical connections and the potential of mechanism-driven modeling,” Front. Neurosci., 14, 566428 (2020); doi: https://doi.org/10.3389/fnins.2020.566428.

Article  PubMed  PubMed Central  Google Scholar 

S. Li, S. Shi, B. Luo, et al., “Tauopathy induces degeneration and impairs regeneration of sensory nerves in the cornea,” Exp. Eye Res., 215, 108900 (2022); doi: https://doi.org/10.1016/j.exer.2021.108900.

Article  CAS  PubMed  Google Scholar 

G. Ponirakis., R. Ghandi, A. Ahmed, et al., “Abnormal corneal nerve morphology and brain volume in patients with schizophrenia,” Sci. Rep., 12, 1870 (2022); https://doi.org/10.1038/s41598-022-05609-w.

S. Karimi, A. Arabi, and T. Shahraki, “Alcohol and the eye,” J. Ophthalmic. Vis. Res., 16, No. 2, 260–270 (2021); doi: https://doi.org/10.18502/jovr.v16i2.9089.

Article  PubMed  PubMed Central  Google Scholar 

J. H. Kim, J. H. Kim, W. H. Nam, et al., “Oral alcohol administration disturbs tear film and ocular surface,” Ophthalmology, 119, No. 5, 965–971 (2012); doi: https://doi.org/10.1016/j.ophtha.2011.11.015.

Article  PubMed  Google Scholar 

X. Xie, K. Feng, J. Wang, et al., “Comprehensive visual electrophysiological measurements discover crucial changes caused by alcohol addiction in humans: Clinical values in early prevention of alcoholic vision decline,” Front. Neural. Circuits, 16, 912883 (2022); doi: https://doi.org/10.3389/fncir.2022.912883.

Article  PubMed  PubMed Central  Google Scholar 

X. Ren, Y. Chou, X. Jiang, et al., “Effects of oral vitamin B1 and mecobalamin on dry eye disease,” J. Ophthalmol., 2020, 9539674 (2020); https://doi.org/10.1155/2020/9539674.

T. Ucak, Y. Karakurt, G. Tasli, et al., “The effects of thiamine pyrophosphate on ethanol induced optic nerve damage,” BMC Pharmacol. Toxicol., 20, No. 1, 40 (2019); doi:https://doi.org/10.1186/s40360-019-0319-5.

G. Sechi and A. Serra, “Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management,” Lancet. Neurol., 6, No. 5, 442–455 (2007); https://doi.org/10.1016/S1474-4422(07)70104-7.

Article  CAS  PubMed  Google Scholar 

Y. M. Parkhomenko, A. S. Pavlova, and O. A. Mezhenskaya, “Mechanisms responsible for the high sensitivity of neural cells to vitamin B1 deficiency,” Neurophysiology, 48, 429–448 (2016); https://doi.org/10.1007/s11062-017-9620-3.

M. Hrubša, T. Siatka, I. Nejmanová, et al., “Biological properties of vitamins of the B-complex, Part 1: Vitamins B1, B2, B3, and B5,” Nutrients, 14, No. 3, 484 (2022); doi:https://doi.org/10.3390/nu14030484.

Article  CAS  Google Scholar 

R. Mancinelli and M. Ceccanti, “Biomarkers in alcohol misuse: Their role in the prevention and detection of thiamine deficiency,” Alcohol Alcohol., 44, No. 2, 177–182 (2009); https://doi.org/10.1093/alcalc/agn117.

Article  CAS  PubMed  Google Scholar 

J. Peragallo, V. Biousse, and N. J. Newman, “Ocular manifestations of drug and alcohol abuse,” Curr. Opin. Ophthalmol., 24, No. 6, 566–573 (2013); doi: https://doi.org/10.1097/icu.0b013e3283654db2.

Article  PubMed  PubMed Central  Google Scholar 

A. S. Hazell, “Astrocytes are a major target in thiamine deficiency and Wernicke’s encephalopathy,” Neurochem. Int., 55, No. 1/3, 129–135 (2009); doi: https://doi.org/10.1016/j.neuint.2009.02.020.

Article  CAS  PubMed  Google Scholar 

K. Zera and J Zastre, “Thiamine deficiency activates hypoxia inducible factor-1α to facilitate pro-apoptotic responses in mouse primary astrocytes,” PloS One, 12, No. 10, e0186707 (2017); doi:https://doi.org/10.1371/journal.pone.0186707.

Article  CAS  Google Scholar 

O. S. Pavlova, A. A. Tykhomyrov, O. A. Mejenskaya, et al., High thiamine dose restores levels of specific astroglial proteins in rat brain astrocytes affected by chronic ethanol consumption,” Ukr. Biochem. J., 91, No. 4, 41–49 (2019).doi: https://doi.org/10.15407/ubj91.04.041.

Article  CAS  Google Scholar 

P. Toledo Nunes, L. C. Vedder, T. Deak, and L. M. Savage, “A pivotal role for thiamine deficiency in the expression of neuroinflammation markers in models of alcohol-related brain damage,” Alcohol. Clin. Exp. Res., 43, No. 3, 425–438 (2019); https://doi.org/10.1111/acer.13946.

C. M. Stoscheck “Quantitation of protein,” Methods Enzymol., 182, 50–68 (1990); doi:https://doi.org/10.1016/0076-6879(90)82008-p

Article  CAS  PubMed  Google Scholar 

A. Marquez, L. S. Guernsey, K. E. Frizzi, et al., “Tau associated peripheral and central neurodegeneration: Identification of an early imaging marker for tauopathy,” Neurobiol. Dis., 151, 105273 (2021); doi:https://doi.org/10.1016/j.nbd.2021.105273

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Liu, C. Guo, P. Hao, et al., “Protection effect of thymosin β4 on ethanol injury in corneal stromal keratocyte,” BMC Ophthalmol., 22, No. 1, 33 (2022); doi:https://doi.org/10.1186/s12886-022-02255-8

J. Y. Oh, J. M. Yu, and J. H. Ko. “Analysis of ethanol effects on corneal epithelium,” Invest. Ophthalmol. Vis. Sci., 54, No. 6, 3852–3856 (2013); doi:https://doi.org/10.1167/iovs.13-11717

Article  CAS  PubMed  Google Scholar 

C. C. Chen, S. W. Liou, C. C. Chen, et al., “Coenzyme Q10 reduces ethanol-induced apoptosis in corneal fibroblasts,” PLoS One, 6, No. 4, e19111 (2011); doi:https://doi.org/10.1371/journal.pone.0019111

Article  CAS  Google Scholar 

H. Y. Lee, N. Naha, J. H. Kim, et al., “Age- and areadependent distinct effects of ethanol on Bax and Bcl-2 expression in prenatal rat brain,” J. Microbiol. Biotechnol., 18, No 9, 1590–1598 (2008).

CAS  PubMed  Google Scholar 

J. Han, L. Gao, J. Dong, et al., “Dopamine attenuates ethanol-induced neuroapoptosis in the developing rat retina via the cAMP/PKA pathway,” Mol. Med. Rep., 16, No. 2, 1982-1990 (2017); https://doi.org/10.3892/mmr.2017.6823.

Article  CAS  PubMed  PubMed Central  Google Scholar 

C. S. Medeiros and M. R. Santhiago, “Corneal nerves anatomy, function, injury and regeneration,” Exp. Eye Res., 200, 108243 (2020); doi:https://doi.org/10.1016/j.exer.2020.108243.

Article  CAS  PubMed  Google Scholar 

R. M. Lasagni Vitar, P. Rama, and G. Ferrari, “The twofaced effects of nerves and neuropeptides in corneal diseases,” Prog. Retin. Eye Res., 86, 100974 (2022); doi:https://doi.org/10.1016/j.preteyeres.2021.100974.

S. M. Gratton and B. L. Lam., “Visual loss and optic nerve head swelling in thiamine deficiency without prolonged dietary deficiency,” Clin. Ophthalmol., 8, 1021-1024 (2014); doi:https://doi.org/10.2147/OPTH.S64228.

S. M. de la Monte and J. J. Kril, “Human alcohol-related neuropathology,” Acta Neuropathol., 127, No. 1, 71-90 (2014); doi:https://doi.org/10.1007/s00401-013-1233-3.

Article  CAS  PubMed  Google Scholar 

J. Pawlowski and A. S. Kraft, “Bax-induced apoptotic cell death,” Proc. Natl. Acad. Sci. U. S. A., 97, No. 2, 529-531 (2000); doi: https://doi.org/10.1073/pnas.97.2.529.

Article  CAS  PubMed  PubMed Central  Google Scholar 

E. H. Cheng, M. C. Wei, S. Weiler, et al., “BCL-2, BCLX(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis,” Mol. Cell., 8, No. 3, 705–711 (2001); doi: https://doi.org/10.1016/s1097-2765(01)00320-3.

Article  CAS  PubMed  Google Scholar 

I. M. Unal-Cevik, Kilinç, Y. Gürsoy-Ozdemir, G. Gurer, and T. Dalkara, “Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note,” Brain Res., 1015, Nos. 1/2, 169–174 (2004); doi:https://doi.org/10.1016/j.brainres.2004.04.032.

V. V. Gusel’nikova and D. E. Korzhevskiy, “NeuN as a neuronal nuclear antigen and neuron differentiation marker,” Acta Naturae, 7, No. 2, 42–47 (2015).

J. R. Cannon and J. T. Greenamyre, “NeuN is not a reliable marker of dopamine neurons in rat substantia nigra,” Neurosci. Lett., 464, No.1, 14–17 (2009); doi:https://doi.org/10.1016/j.neulet.2009.08.023.

Article  CAS  PubMed  Google Scholar 

B. J. Song, M. Akbar, M. A. Abdelmegeed, et al., “Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications,” Redox Biol., 3, 109–123 (2014); doi:https://doi.org/10.1016/j.redox.2014.10.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

D. Liu, Z. Ke, and J. Luo, “Thiamine deficiency and neurodegeneration: the interplay among oxidative stress, endoplasmic reticulum stress, and autophagy,” Mol. Neurobiol., 54, No. 7, 5440–5448 (2017); doi:https://doi.org/10.1007/s12035-016-0079-9.

Article  CAS  PubMed  Google Scholar 

M. Ergül and A. Ş. Taşkıran, “Thiamine protects glioblastoma cells against glutamate toxicity by suppressing oxidative/endoplasmic reticulum stress,” Chem. Pharm. Bull (Tokyo)., 69, No. 9, 832-839 (2021); https://doi.org/10.1248/cpb.c21-00169.

Article  PubMed  Google Scholar 

Y. Kim, H. Choi, W. Lee, et al., “Caspase-cleaved tau exhibits rapid memory impairment associated with tau oligomers in a transgenic mouse model,” Neurobiol. Dis., 87, 19–28 (2016); doi: https://doi.org/10.1016/j.nbd.2015.12.006.

Article  CAS  PubMed  Google Scholar 

A. Yuan, M. V. Rao, Veeranna, and R. A. Nixon, “Neurofilaments and neurofilament proteins in health and disease,” Cold Spring Harb. Perspect. Biol., 9, No. 4, a018309 (2017); doi:https://doi.org/10.1101/cshperspect.a018309.

D. E. Saunders, J. A. DiCerbo, J. R. Williams, and J. H. Hannigan, “Alcohol reduces neurofilament protein levels in primary cultured hippocampal neurons,” Alcohol, 14, No. 5, 519–526 (1997); doi:https://doi.org/10.1016/s0741-8329(97)00043-8.

Article  CAS  PubMed  Google Scholar 

P. Barbier, O. Zejneli, M. Martinho, et al., “Role of Tau as a microtubule-associated protein: Structural and functional aspects,” Front. Aging Neurosci., 11, 204 (2019); doi:https://doi.org/10.3389/fnagi.2019.00204.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif
Back To Top