Pathophysiologic Insights into the Transition from Asymptomatic Bacteriuria to Urinary Tract Infection

Nicolle LE, Gupta K, Bradley SF, et al. Clinical practice guideline for the management of Asymptomatic Bacteriuria: 2019 update by the Infectious Diseases Society of AMERICAA. Clin Infect Dis. 2019;68:1611–5.

Article  PubMed  Google Scholar 

Warren JW, Tenney JH, Hoopes JM, Muncie HL, Anthony WC. A prospective microbiologic study of Bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis. 1982;146:719–23.

Article  CAS  PubMed  Google Scholar 

Magill SS, Edwards JR, Bamberg W, et al. Multistate Point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370:1198–208.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zimlichman E, Henderson D, Tamir O, Franz C, Song P, Yamin CK, Keohane C, Denham CR, Bates DW. Health care–associated infections. JAMA Intern Med. 2013;173:2039.

Article  PubMed  Google Scholar 

Dobberfuhl AD. Pathophysiology, assessment, and treatment of overactive bladder symptoms in patients with interstitial cystitis/bladder pain syndrome. Neurourol Urodyn. 2022;41:1958–66.

Article  CAS  PubMed  Google Scholar 

Bai Y, Wang X, Li X, Pu C, Yuan H, Tang Y, Li J, Wei Q, Han P. Management of catheter-related bladder discomfort in patients who underwent elective surgery. J Endourol. 2015;29:640–9.

Article  PubMed  PubMed Central  Google Scholar 

Hu B, Li C, Pan M, Zhong M, Cao Y, Zhang N, Yuan H, Duan H. Strategies for the prevention of catheter-related bladder discomfort. Medicine. 2016. https://doi.org/10.1097/md.0000000000004859.

Article  PubMed  PubMed Central  Google Scholar 

Agarwal A, Raza M, Singhal V, Dhiraaj S, Kapoor R, Srivastava A, Gupta D, Singh PK, Pandey CK, Singh U. The efficacy of Tolterodine for prevention of catheter-related bladder discomfort: a prospective, randomized, placebo-controlled, double-blind study. Anesth Analg. 2005;101:1065–7.

Article  CAS  PubMed  Google Scholar 

•• Eberly AR, Beebout CJ, Carmen Tong CM, et al. Defining a molecular signature for uropathogenic versus urocolonizing Escherichia coli: the status of the field and new clinical opportunities. J Molecul Biol. 2020;432:786–804. The identification of a molecular signature that differentiates uropathogenic E. coli from urocolonizing strains, as highlighted in the paper, presents potential significant clinical opportunities. This distinction could play a crucial role in the diagnosis and treatment of urinary tract infections (UTIs), enabling targeted therapies that ultimately lead to improved patient outcomes.

• Zou Z, Potter RF, McCoy WH, Wildenthal JA, Katumba GL, Mucha PJ, Dantas G, Henderson JP. E. coli catheter-associated urinary tract infections are associated with distinctive virulence and biofilm gene determinants. JCI Insight. 2023. https://doi.org/10.1172/jci.insight.161461. This paper highlights the association between distinct virulence factors and biofilm gene determinants in E. coli catheter-associated urinary tract infections (CAUTIs). Understanding these specific molecular characteristics is essential for comprehending the pathogenicity of CAUTIs and developing targeted interventions to prevent and treat these infections effectively.

• Jayalath S, Magana-Arachchi D. Dysbiosis of the human urinary microbiome and its association to diseases affecting the urinary system. Indian J Microbiol. 2021. 62:153–66. This paper explores the dysbiosis of the human urinary microbiome and its association with diseases that affect the urinary system. By investigating the microbial imbalances in the urinary tract, this research provides valuable insights into the role of the urinary microbiome in the development and progression of urinary diseases. These findings have implications for understanding disease pathogenesis and potentially developing new strategies for diagnosis and treatment.

Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.

Article  Google Scholar 

•• Dominoni M, Scatigno AL, La Verde M, Bogliolo S, Melito C, Gritti A, Pasquali MF, Torella M, Gardella B. Microbiota ecosystem in recurrent cystitis and the immunological microenvironment of urothelium. Healthcare. 2023;11:525. This paper focuses on the microbiota ecosystem in recurrent cystitis, shedding light on the complex interaction between the microbial community and the host’s urothelium. Understanding the dynamics of the microbiota in this context is crucial for developing effective strategies to manage and prevent recurrent cystitis. By exploring the immunological microenvironment of the urothelium in the context of recurrent cystitis, this research provides valuable insights into the mechanisms underlying pathogenesis of recurrent cystitis. These findings have significant implications for the development of targeted therapeutic interventions.

Burnett LA, Hochstedler BR, Weldon K, Wolfe AJ, Brubaker L. Recurrent urinary tract infection: association of clinical profiles with urobiome composition in women. Neurourol Urodyn. 2021;40:1479–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang J. Microbiome in the urinary system—a review. AIMS Microbiology. 2017;3:143–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubourg G, Morand A, Mekhalif F, et al. Deciphering the urinary microbiota repertoire by Culturomics reveals mostly anaerobic bacteria from the gut. Front Microbiol. 2020. https://doi.org/10.3389/fmicb.2020.513305.

Article  PubMed  PubMed Central  Google Scholar 

Moustafa A, Li W, Singh H, et al. Microbial metagenome of urinary tract infection. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-22660-8.

Article  PubMed  PubMed Central  Google Scholar 

Hilt EE, McKinley K, Pearce MM, Rosenfeld AB, Zilliox MJ, Mueller ER, Brubaker L, Gai X, Wolfe AJ, Schreckenberger PC. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J Clin Microbiol. 2014;52:871–6.

Article  PubMed  PubMed Central  Google Scholar 

Pohl HG, Groah SL, Pérez-Losada M, Ljungberg I, Sprague BM, Chandal N, Caldovic L, Hsieh M. The urine microbiome of healthy men and women differs by urine collection method. Int Neurourol J. 2020;24:41–51.

Article  PubMed  PubMed Central  Google Scholar 

Foxman B. Urinary tract infection syndromes. Infect Dis Clin North Am. 2014;28:1–13.

Article  PubMed  Google Scholar 

Cristea VC, Gheorghe I, Czobor Barbu I, et al. Snapshot of phylogenetic groups, virulence, and resistance markers in Escherichia coli uropathogenic strains isolated from outpatients with urinary tract infections in Bucharest, Romania. Biomed Res Int. 2019;2019:1–8.

Article  Google Scholar 

Lavigne J-P, Bruyère F, Bernard L, et al. Resistance and virulence potential of uropathogenic Escherichia coli strains isolated from patients hospitalized in urology departments: a French prospective multicentre study. J Med Microbiol. 2016;65:530–7.

Article  PubMed  Google Scholar 

Amarsy R, Guéret D, Benmansour H, et al. Determination of Escherichia coli phylogroups in elderly patients with urinary tract infection or asymptomatic bacteriuria. Clin Microbiol Infect. 2019;25:839–44.

Article  CAS  PubMed  Google Scholar 

• Maniam L, Vellasamy KM, Jindal HM, Narayanan V, Danaee M, Vadivelu J, Pallath V. Demonstrating the utility of Escherichia coli asymptomatic bacteriuria isolates’ virulence profile towards diagnosis and management—a preliminary analysis. PLOS One. 2022. https://doi.org/10.1371/journal.pone.0267296. By analyzing the virulence profile of E. coli isolates causing bacteriuria, this research can contribute to improved diagnosis and management strategies for asymptomatic bacteriuria, ultimately enhancing patient care and outcomes.

Mohammed EJ, Hasan KC, Allami M. Phylogenetic groups, serogroups and virulence factors of uropathogenic Escherichia coli isolated from patients with urinary tract infection in Baghdad, Iraq. Iran J Microbiol. 2022. https://doi.org/10.18502/ijm.v14i4.10230.

Article  PubMed  PubMed Central  Google Scholar 

Schreiber HL, Conover MS, Chou W-C, et al. Bacterial virulence phenotypes of Escherichia coli and host susceptibility determine risk for urinary tract infections. Science Translational Medicine. 2017. https://doi.org/10.1126/scitranslmed.aaf1283.

Article  PubMed  PubMed Central  Google Scholar 

Leihof RF, Nielsen KL, Frimodt-Møller N. Asymptomatic bacteriuria (ABU) in elderly: prevalence, virulence, phylogeny, antibiotic resistance and complement c3 in urine. Microorganisms. 2021;9:390.

Article  PubMed  PubMed Central  Google Scholar 

Chong A, Wehrly TD, Child R, Hansen B, Hwang S, Virgin HW, Celli J. Cytosolic clearance of replication-deficient mutants reveals Francisella tularensis interactions with the autophagic pathway. Autophagy. 2012;8:1342–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mantena RK, Wijburg OL, Vindurampulle C, Bennett-Wood VR, Walduck A, Drummond GR, Davies JK, Robins-Browne RM, Strugnell RA. Reactive oxygen species are the major antibacterials against Salmonella typhimurium purine auxotrophs in the phagosome of raw 264.7 cells. Cell Microbiol. 2008;10:1058–73.

Article  CAS  PubMed  Google Scholar 

Alcantara RB, Read RD, Valderas MW, Brown TD, Roop RM. Intact purine biosynthesis pathways are required for wild-type virulence of Brucella abortus 2308 in the BALB/c mouse model. Infect Immun. 2004;72:4911–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pilatz S, Breitbach K, Hein N, Fehlhaber B, Schulze J, Brenneke B, Eberl L, Steinmetz I. Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun. 2006;74:3576–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwartz DJ, Chen SL, Hultgren SJ, Seed PC. Population dynamics and niche distribution of uropathogenic Escherichia coli during acute and chronic urinary tract infection. Infect Immun. 2011;79:4250–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaffer CL, Zhang EW, Dudley AG, et al. Purine biosynthesis metabolically constrains intracellular survival of uropathogenic Escherichia coli. Infect Immun. 2017. https://doi.org/10.1128/iai.00471-16.

Article  PubMed  PubMed Central  Google Scholar 

Andersen-Civil AI, Ahmed S, Guerra PR, Andersen TE, Hounmanou YM, Olsen JE, Herrero-Fresno A. The impact of inactivation of the purine biosynthesis genes, Purn and purt, on growth and virulence in uropathogenic E. coli. Mol Biol Rep. 2018;45:2707–16.

Article  CAS  PubMed  Google Scholar 

Makaroff CA, Zalkin H. Regulation of Escherichia coli purF. Analysis of the control region of a pur regulon gene. J Biol Chem. 1985;260:10378–87.

Article  CAS  PubMed  Google Scholar 

Kostakioti M, Hadjifrangiskou M, Pinkner JS, Hultgren SJ. QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Mol Microbiol. 2009;73:1020–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hadjifrangiskou M, Kostakioti M, Chen SL, Henderson JP, Greene SE, Hultgren SJ. A central metabolic circuit controlled by QseC in pathogenic Escherichia coli. Mol Microbiol. 2011;80:1516–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif