Management Strategy for Prostate Imaging Reporting and Data System Category 3 Lesions

Smith CP, Türkbey B. PI-RADS v2: Current standing and future outlook. Turk J Urol. 2018;44(3):189–94. https://doi.org/10.5152/tud.2018.12144.

Article  PubMed  PubMed Central  Google Scholar 

•• Wadera A, et al. Impact of PI-RADS Category 3 lesions on the diagnostic accuracy of MRI for detecting prostate cancer and the prevalence of prostate cancer within each PI-RADS category: a systematic review and meta-analysis. Br J Radiol. 2021;94(1118):20191050. https://doi.org/10.1259/bjr.20191050The study found that PI-RADS category 3 lesions can significantly impact the diagnostic test accuracy of MRI for prostate cancer detection. This is the foundation for paying attention to PI-RADS 3 lesions.

Article  PubMed  Google Scholar 

Nowier A, et al. Performance of multi-parametric magnetic resonance imaging through PIRADS scoring system in biopsy naïve patients with suspicious prostate cancer. Arab J Urol. 2022;20(3):121–5. https://doi.org/10.1080/2090598x.2022.2067615.

Article  PubMed  PubMed Central  Google Scholar 

Schoots IG. MRI in early prostate cancer detection: how to manage indeterminate or equivocal PI-RADS 3 lesions?. Transl Androl Urol. 2018;7(1):70–82. https://doi.org/10.21037/tau.2017.12.31.

Lim CS, et al. Utility of machine learning of apparent diffusion coefficient (ADC) and T2-weighted (T2W) radiomic features in PI-RADS version 2.1 category 3 lesions to predict prostate cancer diagnosis. Abdom Radiol (NY). 2021;46(12):5647–5658. https://doi.org/10.1007/s00261-021-03235-0.

•• Hermie I, et al. Which clinical and radiological characteristics can predict clinically significant prostate cancer in PI-RADS 3 lesions? A retrospective study in a high-volume academic center. Eur J Radiol. 2019;114:92–8. https://doi.org/10.1016/j.ejrad.2019.02.031. The study found that prostate volume and the ratio of ADC tumor on ADC of the contralateral prostate have the potential to predict csPCa in PI-RADS 3 lesions with a sensitivity of 59% and specificity of 88%. This study explores useful clinical imaging indicators for diagnosing csPCa in PI-RADS 3 lesions.

Article  PubMed  Google Scholar 

Lim CS, et al. When to biopsy Prostate Imaging and Data Reporting System version 2 (PI-RADSv2) assessment category 3 lesions? Use of clinical and imaging variables to predict cancer diagnosis at targeted biopsy. Can Urol Assoc J. 2021;15(4):115–21. https://doi.org/10.5489/cuaj.6781.

Article  PubMed  Google Scholar 

Yang S, et al. Combining clinical and MRI data to manage PI-RADS 3 lesions and reduce excessive biopsy. Transl Androl Urol. 2020;9(3):1252–1261. https://doi.org/10.21037/tau-19-755.

•• Rahota RG, et al. Pathological features of Prostate Imaging Reporting and Data System (PI-RADS) 3 MRI lesions in biopsy and radical prostatectomy specimens. BJU Int. 2022;129(5):621–6. https://doi.org/10.1111/bju.15563. The study found that PI-RADS 3 lesions exhibited aggressive features in almost 40% of cases, and PSA density and presence of csPCa on targeted biopsy are independent predictive factors for high grade and/or extraprostatic disease. This study elucidates the pathological features of PI-RADS 3 lesions and provides the proportion of those with malignant characteristics.

Article  CAS  PubMed  Google Scholar 

Scialpi M, et al. Score 3 prostate lesions: a gray zone for PI-RADS v2. Turk J Urol. 2017;43(3):237–40. https://doi.org/10.5152/tud.2017.01058.

Article  PubMed  PubMed Central  Google Scholar 

Morash C. What do you do with PI-RADS-3? Can Urol Assoc J. 2021;15(4):122. https://doi.org/10.5489/cuaj.7262.

Article  PubMed  PubMed Central  Google Scholar 

Versalle D, et al. Practice-level variation in the decision to biopsy prostate imaging-reporting and data system 3 lesions in favorable-risk prostate cancer patients. Urology. 2022;164:191–6. https://doi.org/10.1016/j.urology.2022.01.020.

Article  PubMed  Google Scholar 

Kang HC, et al. Accuracy of prostate magnetic resonance imaging: reader experience matters. Eur Urol Open Sci. 2021;27:53–60. https://doi.org/10.1016/j.euros.2021.03.004.

Article  PubMed  PubMed Central  Google Scholar 

Pepe P, et al. mpMRI PI-RADS score 3 lesions diagnosed by reference vs affiliated radiological centers: our experience in 950 cases. Arch Ital Urol Androl. 2021;93(2):139–42. https://doi.org/10.4081/aiua.2021.2.139.

Article  PubMed  Google Scholar 

Salah F. Guidelines needed to standardize care for PI-RADS 3 Patients. RSNA 2020 session, 2020. SSGU07. https://dailybulletin.rsna.org/dailybulletin/index.cfm?pg=20mon07

Boschheidgen M, et al. Single center analysis of an advisable control interval for follow-up of patients with PI-RADS category 3 in multiparametric MRI of the prostate. Sci Rep. 2022;12(1):6746. https://doi.org/10.1038/s41598-022-10859-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tamada T, et al. Comparison of biparametric and multiparametric MRI for clinically significant prostate cancer detection with PI-RADS version 2.1. J Magn Reson Imaging. 2021;53(1):283–291. https://doi.org/10.1002/jmri.27283.

Gatti M, et al. Prostate cancer detection with biparametric magnetic resonance imaging (bpMRI) by readers with different experience: performance and comparison with multiparametric (mpMRI). Abdom Radiol (NY). 2019;44(5):1883–93. https://doi.org/10.1007/s00261-019-01934-3.

Article  PubMed  Google Scholar 

Hassanzadeh E, et al. Prostate imaging reporting and data system version 2 (PI-RADS v2): a pictorial review. Abdom Radiol (NY). 2017;42(1):278–89. https://doi.org/10.1007/s00261-016-0871-z.

Article  PubMed  Google Scholar 

Abreu-Gomez J, et al. Pharmacokinetic modeling of dynamic contrast-enhanced (DCE)-MRI in PI-RADS category 3 peripheral zone lesions: preliminary study evaluating DCE-MRI as an imaging biomarker for detection of clinically significant prostate cancers. Abdom Radiol (NY). 2021;46(9):4370–80. https://doi.org/10.1007/s00261-021-03035-6.

Article  PubMed  Google Scholar 

Rico L, et al. PI-RADS 3 lesions: does the association of the lesion volume with the prostate-specific antigen density matter in the diagnosis of clinically significant prostate cancer? Urol Oncol. 2021;(7):431 e9–431 e13. https://doi.org/10.1016/j.urolonc.2020.11.010.

Rosenkrantz AB, et al. Interobserver reproducibility of the PI-RADS version 2 lexicon: a multicenter study of six experienced prostate radiologists. Radiology. 2016;280(3):793–804. https://doi.org/10.1148/radiol.2016152542.

Article  PubMed  Google Scholar 

Natale C, et al. Considering predictive factors in the diagnosis of clinically significant prostate cancer in patients with PI-RADS 3 lesions. Life (Basel). 2021;11(12). https://doi.org/10.3390/life11121432.

Kim M, et al. Who can safely evade a magnetic resonance imaging fusion-targeted biopsy (MRIFTB) for prostate imaging reporting and data system (PI-RADS) 3 lesion? World J Urol. 2021;39(5):1463–71. https://doi.org/10.1007/s00345-020-03352-3.

Article  CAS  PubMed  Google Scholar 

Maggi M, et al. Prostate Imaging Reporting and Data System 3 category cases at multiparametric magnetic resonance for prostate cancer: a systematic review and meta-analysis. Eur Urol Focus. 2020;6(3):463–78. https://doi.org/10.1016/j.euf.2019.06.014.

Article  PubMed  Google Scholar 

Fang AM, et al. Multi-institutional analysis of clinical and imaging risk factors for detecting clinically significant prostate cancer in men with PI-RADS 3 lesions. Cancer. 2022. https://doi.org/10.1002/cncr.34355.

Article  PubMed  PubMed Central  Google Scholar 

Osses DF, et al. Equivocal PI-RADS three lesions on prostate magnetic resonance imaging: risk stratification strategies to avoid MRI-targeted biopsies. J Pers Med. 2020;10(4). https://doi.org/10.3390/jpm10040270.

Tavakoli AA, et al. Contribution of dynamic contrast-enhanced and diffusion MRI to PI-RADS for detecting clinically significant prostate cancer. Radiology. 2023;306(1):186–99. https://doi.org/10.1148/radiol.212692.

Article  PubMed  Google Scholar 

Felker ER, et al. Risk stratification among men with Prostate Imaging Reporting and Data System version 2 category 3 transition zone lesions: is biopsy always necessary? AJR Am J Roentgenol. 2017;209(6):1272–7. https://doi.org/10.2214/ajr.17.18008.

Article  PubMed  PubMed Central  Google Scholar 

Johnston EW, et al. VERDICT MRI for prostate cancer: intracellular volume fraction versus apparent diffusion coefficient. Radiology. 2019;291(2):391–7. https://doi.org/10.1148/radiol.2019181749.

Article  PubMed  Google Scholar 

Kim TJ, et al. Outcomes of magnetic resonance imaging fusion-targeted biopsy of prostate imaging reporting and data system 3 lesions. World J Urol. 2019;37(8):1581–6. https://doi.org/10.1007/s00345-018-2565-3.

Article  CAS  PubMed  Google Scholar 

Hansen NL, et al. Sub-differentiating equivocal PI-RADS-3 lesions in multiparametric magnetic resonance imaging of the prostate to improve cancer detection. Eur J Radiol. 2017;95:307–13. https://doi.org/10.1016/j.ejrad.2017.08.017.

Article  CAS  PubMed  Google Scholar 

Knight AS, Sharma P, de Riese WTW. MRI determined prostate volume and the incidence of prostate cancer on MRI-fusion biopsy: a systemic review of reported data for the last 20 years. Int Urol Nephrol. 2022;54(12):3047–54. https://doi.org/10.1007/s11255-022-03351-w.

Article  PubMed  Google Scholar 

Al Hussein Al Awamlh B, et al. Multicenter analysis of clinical and MRI characteristics associated with detecting clinically significant prostate cancer in PI-RADS (v2.0) category 3 lesions. Urol Oncol. 2020;38(7):637.e9–637 e15. https://doi.org/10.1016/j.urolonc.2020.03.019.

Sheridan AD, et al. Risk of clinically significant prostate cancer associated with Prostate Imaging Reporting and Data System category 3 (equivocal) lesions identified on multiparametric prostate MRI. AJR Am J Roentgenol. 2018;210(2):347–57. https://doi.org/10.2214/ajr.17.18516.

Article  PubMed  Google Scholar 

Tosoian JJ, et al. Urinary MyProstateScore (MPS) to rule out clinically-significant cancer in men with equivocal (PI-RADS 3) multiparametric MRI: addressing an unmet clinical need. Urology. 2022;164:184–90. https://doi.org/10.1016/j.urology.2021.11.033.

Article  PubMed  Google Scholar 

Cao Y, et al. The combination of prostate imaging reporting and data system version 2 (PI-RADS v2) and periprostatic fat thickness on multi-parametric MRI to predict the presence of prostate cancer. Oncotarget. 2017;8(27):44040–44049. https://doi.org/10.18632/oncotarget.17182.

Klocker H, et al. Development and validation of a novel multivariate risk score to guide biopsy decision for the diagnosis of clinically significant prostate cancer. BJUI Compass. 2020;1(1):15–20. https://doi.org/10.1002/bco2.8.

Article  PubMed  PubMed Central  Google Scholar 

Morote J, et al. Improving the early detection of clinically significant prostate cancer in men in the challenging Prostate Imaging-Reporting and Data System 3 category. Eur Urol Open Sci. 2022;37:38–44. https://doi.org/10.1016/j.euros.2021.12.009.

Article  PubMed  PubMed Central  Google Scholar 

García Garzón JR, et al. (68)Ga-PSMA PET/CT in prostate cancer. Rev Esp Med Nucl Imagen Mol (Engl Ed). 2018;37(2):130–8. https://doi.org/10.1016/j.remn.2017.07.004.

Article  PubMed  Google Scholar 

Yang J, et al. The use of (68) Ga-PSMA PET/CT to stratify patients with PI-RADS 3 lesions according to clinically significant prostate cancer risk. Prostate. 2023;83(5):430–9. https://doi.org/10.1002/pros.24475.

Article  CAS  PubMed  G

留言 (0)

沒有登入
gif