Targeting MyD88: Therapeutic mechanisms and potential applications of the specific inhibitor ST2825

Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility[J]. Cell. 2015;160(5):816–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Netea MG, Balkwill F, Chonchol M, et al. Author correction: a guiding map for inflammation[J]. Nat Immunol. 2021;22(2):254.

Article  CAS  PubMed  Google Scholar 

Lord KA, Hoffman-Liebermann B, Liebermann DA. Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6[J]. Oncogene. 1990;5(7):1095–7.

CAS  PubMed  Google Scholar 

Hardiman G, Rock FL, Balasubramanian S, et al. Molecular characterization and modular analysis of human MyD88[J]. Oncogene. 1996;13(11):2467–75.

CAS  PubMed  Google Scholar 

Akira S, Takeda K. Toll-like receptor signalling[J]. Nat Rev Immunol. 2004;4(7):499–511.

Article  CAS  PubMed  Google Scholar 

Baud V, Liu ZG, Bennett B, et al. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain[J]. Genes Dev. 1999;13(10):1297–308.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling[J]. Nature. 2010;465(7300):885–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nat Immunol. 2010;11(5):373–84.

Article  CAS  PubMed  Google Scholar 

Liu M, Hu Z, Wang C, et al. The TLR/MyD88 signalling cascade in inflammation and gastric cancer: the immune regulatory network of Helicobacter pylori[J]. J Mol Med (Berl). 2023;101:767–81.

Article  CAS  PubMed  Google Scholar 

Kim YC, Lee SE, Kim SK, et al. Toll-like receptor mediated inflammation requires FASN-dependent MYD88 palmitoylation[J]. Nat Chem Biol. 2019;15(9):907–16.

Article  CAS  PubMed  Google Scholar 

Yuan Q, Zhang J, Liu Y, et al. MyD88 in myofibroblasts regulates aerobic glycolysis-driven hepatocarcinogenesis via ERK-dependent PKM2 nuclear relocalization and activation[J]. J Pathol. 2022;256(4):414–26.

Article  CAS  PubMed  Google Scholar 

Zhang J, Liu Y, Chen H, et al. MyD88 in hepatic stellate cells enhances liver fibrosis via promoting macrophage M1 polarization[J]. Cell Death Dis. 2022;13(4):411.

Article  PubMed  PubMed Central  Google Scholar 

Bayer AL, Alcaide P. MyD88: at the heart of inflammatory signaling and cardiovascular disease[J]. J Mol Cell Cardiol. 2021;161:75–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Owen AM, Luan L, Burelbach KR, et al. MyD88-dependent signaling drives toll-like receptor-induced trained immunity in macrophages[J]. Front Immunol. 2022;13:1044662.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dolcino M, Tinazzi E, Puccetti A, et al. In systemic sclerosis, a unique long non coding RNA regulates genes and pathways involved in the three main features of the disease (Vasculopathy, Fibrosis and Autoimmunity) and in carcinogenesis[J]. J Clin Med. 2019;8(3):320.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown GJ, Canete PF, Wang H, et al. TLR7 gain-of-function genetic variation causes human lupus[J]. Nature. 2022;605(7909):349–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan Q, Gu J, Zhang J, et al. MyD88 in myofibroblasts enhances colitis-associated tumorigenesis via promoting macrophage M2 polarization[J]. Cell Rep. 2021;34(5): 108724.

Article  CAS  PubMed  Google Scholar 

Zhu G, Cheng Z, Huang Y, et al. MyD88 mediates colorectal cancer cell proliferation, migration and invasion via NF-kappaB/AP-1 signaling pathway[J]. Int J Mol Med. 2020;45(1):131–40.

CAS  PubMed  Google Scholar 

Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma[J]. Nature. 2011;470(7332):115–9.

Article  CAS  PubMed  Google Scholar 

Saikh KU. MyD88 and beyond: a perspective on MyD88-targeted therapeutic approach for modulation of host immunity[J]. Immunol Res. 2021;69(2):117–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-kappaB: a blossoming of relevance to human pathobiology[J]. Cell. 2017;168(1–2):37–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loiarro M, Capolunghi F, Fanto N, et al. Pivotal advance: inhibition of MyD88 dimerization and recruitment of IRAK1 and IRAK4 by a novel peptidomimetic compound[J]. J Leukoc Biol. 2007;82(4):801–10.

Article  CAS  PubMed  Google Scholar 

Loiarro M, Sette C, Gallo G, et al. Peptide-mediated interference of TIR domain dimerization in MyD88 inhibits interleukin-1-dependent activation of NF-kappaB[J]. J Biol Chem. 2005;280(16):15809–14.

Article  CAS  PubMed  Google Scholar 

Bartfai T, Behrens MM, Gaidarova S, et al. A low molecular weight mimic of the Toll/IL-1 receptor/resistance domain inhibits IL-1 receptor-mediated responses[J]. Proc Natl Acad Sci U S A. 2003;100(13):7971–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davis CN, Mann E, Behrens MM, et al. MyD88-dependent and -independent signaling by IL-1 in neurons probed by bifunctional Toll/IL-1 receptor domain/BB-loop mimetics[J]. Proc Natl Acad Sci U S A. 2006;103(8):2953–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia[J]. N Engl J Med. 2012;367(9):826–33.

Article  CAS  PubMed  Google Scholar 

Olson MA, Lee MS, Kissner TL, et al. Discovery of small molecule inhibitors of MyD88-dependent signaling pathways using a computational screen[J]. Sci Rep. 2015;5:14246.

Article  PubMed  PubMed Central  Google Scholar 

Zou Z, Du D, Miao Y, et al. TJ-M2010-5, a novel MyD88 inhibitor, corrects R848-induced lupus-like immune disorders of B cells in vitro[J]. Int Immunopharmacol. 2020;85: 106648.

Article  CAS  PubMed  Google Scholar 

Li C, Zhang LM, Zhang X, et al. Short-term pharmacological Inhibition of MyD88 homodimerization by a novel inhibitor promotes robust allograft tolerance in mouse cardiac and skin transplantation[J]. Transplantation. 2017;101(2):284–93.

Article  CAS  PubMed  Google Scholar 

Zheng XY, Sun CC, Liu Q, et al. Compound LM9, a novel MyD88 inhibitor, efficiently mitigates inflammatory responses and fibrosis in obesity-induced cardiomyopathy[J]. Acta Pharmacol Sin. 2020;41(8):1093–101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song J, Chen D, Pan Y, et al. Discovery of a novel MyD88 inhibitor M20 and its protection against sepsis-mediated acute lung injury[J]. Front Pharmacol. 2021;12: 775117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Hunter ZR, Xu L, et al. Targeting myddosome assembly in Waldenstrom Macroglobulinaemia[J]. Br J Haematol. 2017;177(5):808–13.

Article  PubMed  Google Scholar 

Loiarro M, Volpe E, Ruggiero V, et al. Mutational analysis identifies residues crucial for homodimerization of myeloid differentiation factor 88 (MyD88) and for its function in immune cells[J]. J Biol Chem. 2013;288(42):30210–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu BC, Wu GH, Shao ZQ, et al. Redox DAPK1 destabilizes Pellino1 to govern inflammation-coupling tubular damage during septic AKI[J]. Theranostics. 2020;10(25):11479–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu Y, Zhang XS, Zhang ZH, et al. Peroxiredoxin 2 activates microglia by interacting with Toll-like receptor 4 after subarachnoid hemorrhage[J]. J Neuroinflammation. 2018;15(1):87.

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Tan Y, Huang Z, et al. Disrupting myddosome assembly in diffuse large B-cell lymphoma cells using the MYD88 dimerization inhibitor ST2825[J]. Oncol Rep. 2019;42(5):1755–66.

CAS 

留言 (0)

沒有登入
gif