Outcomes of hypothalamic oxytocin neuron-driven cardioprotection after acute myocardial infarction

Abe M, Rastelli DD, Gomez AC, Cingolani E, Lee Y, Soni PR, Fishbein MC, Lehman TJA, Shimada K, Crother TR, Chen S, Noval Rivas M, Arditi M (2020) IL-1-dependent electrophysiological changes and cardiac neural remodeling in a mouse model of Kawasaki disease vasculitis. Clin Exp Immunol 199:303–313. https://doi.org/10.1111/cei.13401

Article  CAS  PubMed  Google Scholar 

Agarwal R, Mokelke E, Ruble SB, Stolen CM (2016) Vagal nerve stimulation evoked heart rate changes and protection from cardiac remodeling. J Cardiovasc Transl Res 9:67–76. https://doi.org/10.1007/s12265-015-9668-7

Article  PubMed  Google Scholar 

Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol - Hear Circ Physiol 267:H742–H750. https://doi.org/10.1152/ajpheart.1994.267.2.h742

Article  CAS  Google Scholar 

Androne AS, Hryniewicz K, Goldsmith R, Arwady A, Katz SD (2003) Acetylcholinesterase inhibition with pyridostigmine improves heart rate recovery after maximal exercise in patients with chronic heart failure. Heart 89:854–858. https://doi.org/10.1136/heart.89.8.854

Article  CAS  PubMed  PubMed Central  Google Scholar 

Basalay MV, Mastitskaya S, Mrochek A, Ackland GL, Del Arroyo AG, Sanchez J, Sjoquist P-O, Pernow J, Gourine AV, Gourine A (2016) Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning. Cardiovasc Res 112:669–676. https://doi.org/10.1093/cvr/cvw216

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bassino E, Fornero S, Gallo MP, Gallina C, Femminò S, Levi R, Tota B, Alloatti G (2015) Catestatin exerts direct protective effects on rat cardiomyocytes undergoing ischemia/reperfusion by stimulating PI3K-Akt-GSK3β pathway and preserving mitochondrial membrane potential. PLoS ONE 10:e0119790. https://doi.org/10.1371/journal.pone.0119790

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behling A, Moraes RS, Rohde LE, Ferlin EL, Nóbrega ACL, Ribeiro JP (2003) Cholinergic stimulation with pyridostigmine reduces ventricular arrhythmia and enhances heart rate variability in heart failure. Am Heart J 146:494–500. https://doi.org/10.1016/S0002-8703(03)00319-3

Article  CAS  PubMed  Google Scholar 

Bi X, He X, Xu M, Zhao M, Yu X, Lu X, Zang W (2015) Acetylcholine ameliorates endoplasmic reticulum stress in endothelial cells after hypoxia/reoxygenation via M3 AChR-AMPK signaling. Cell Cycle 14:2461–2472. https://doi.org/10.1080/15384101.2015.1060383

Article  CAS  PubMed  PubMed Central  Google Scholar 

Billman GE (2009) Cardiac autonomic neural remodeling and susceptibility to sudden cardiac death: effect of endurance exercise training. Am J Physiol Circ Physiol 297:H1171–H1193. https://doi.org/10.1152/ajpheart.00534.2009

Article  CAS  Google Scholar 

Boengler K, Ruiz-Meana M, Gent S, Ungefug E, Soetkamp D, Miro-Casas E, Cabestrero A, Fernandez-Sanz C, Semenzato M, Di Lisa F, Rohrbach S, Garcia-Dorado D, Heusch G, Schulz R (2012) Mitochondrial connexin 43 impacts on respiratory complex I activity and mitochondrial oxygen consumption. J Cell Mol Med 16:1649–1655. https://doi.org/10.1111/j.1582-4934.2011.01516.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462. https://doi.org/10.1038/35013070

Article  CAS  PubMed  Google Scholar 

Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femminò S, García-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter K-D, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G (2018) Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 113:39. https://doi.org/10.1007/s00395-018-0696-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown DA, O’Rourke B (2010) Cardiac mitochondria and arrhythmias. Cardiovasc Res 88:241–249. https://doi.org/10.1093/cvr/cvq231

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cavalcante GL, Brognara F, Oliveira LV de C, Lataro RM, Durand M de T, Oliveira AP, Nóbrega ACL, Salgado HC, Sabino JPJ (2021) Benefits of pharmacological and electrical cholinergic stimulation in hypertension and heart failure. Acta Physiol. doi: https://doi.org/10.1111/apha.13663

Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Advan Enzym Relat Areas Mol Biol 17:65–135

CAS  Google Scholar 

Chen J, Li M, Yu Y, Wu X, Jiang R, Jin Y, Li J (2015) Prevention of ventricular arrhythmia complicating acute myocardial infarction by local cardiac denervation. Int J Cardiol 184:667–673. https://doi.org/10.1016/j.ijcard.2015.03.057

Article  PubMed  Google Scholar 

Chen M, Zhou X, Yu L, Liu Q, Sheng X, Wang Z, Wang S, Jiang H, Zhou S (2016) Low-level vagus nerve stimulation attenuates myocardial ischemic reperfusion injury by antioxidative stress and antiapoptosis reactions in canines. J Cardiovasc Electrophysiol 27:224–231. https://doi.org/10.1111/jce.12850

Article  PubMed  Google Scholar 

Cheng YF, Chang YT, Chen WH, Shih HC, Chen YH, Shyu BC, Chen CC (2017) Cardioprotection induced in a mouse model of neuropathic pain via anterior nucleus of paraventricular thalamus. Nat Commun. https://doi.org/10.1038/s41467-017-00891-z

Article  PubMed  PubMed Central  Google Scholar 

Choi J-E, Mostoslavsky R (2014) Sirtuins, metabolism, and DNA repair. Curr Opin Genet Dev 26:24–32. https://doi.org/10.1016/j.gde.2014.05.005

Article  CAS  PubMed  Google Scholar 

Chung CH, Bretherton B, Zainalabidin S, Deuchars SA, Deuchars J, Mahadi MK (2020) Mediation of cardiac macrophage activity via auricular vagal nerve stimulation ameliorates cardiac ischemia/reperfusion injury. Front Neurosci 14:906. https://doi.org/10.3389/fnins.2020.00906

Article  PubMed  PubMed Central  Google Scholar 

Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS (1999) Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med 341:1351–1357. https://doi.org/10.1056/NEJM199910283411804

Article  CAS  PubMed  Google Scholar 

Curtis BM, Okeefe JH (2002) Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc 77:45–54. https://doi.org/10.4065/77.1.45

Article  PubMed  Google Scholar 

DeMazumder D, Kass DA, O’Rourke B, Tomaselli GF (2015) Cardiac resynchronization therapy restores sympathovagal balance in the failing heart by differential remodeling of cholinergic signaling. Circ Res 116:1691–1699. https://doi.org/10.1161/CIRCRESAHA.116.305268

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dergacheva O, Dyavanapalli J, Piñol RA, Mendelowitz D (2014) Chronic intermittent hypoxia and hypercapnia inhibit the hypothalamic paraventricular nucleus neurotransmission to parasympathetic cardiac neurons in the brain stem. Hypertension 64:597–603. https://doi.org/10.1161/HYPERTENSIONAHA.114.03603

Article  CAS  PubMed  Google Scholar 

Dinarello CA (2011) A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur J Immunol 41:1203–1217. https://doi.org/10.1002/eji.201141550

Article  CAS  PubMed  Google Scholar 

Dorn GW, Vega RB, Kelly DP, Kelly DP (2015) Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev 29:1981–1991. https://doi.org/10.1101/gad.269894.115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duncan JG, Finck BN (2008) The PPARalpha-PGC-1alpha axis controls cardiac energy Metabolism in Healthy and Diseased Myocardium. PPAR Res 2008:253817. https://doi.org/10.1155/2008/253817

Article  CAS  PubMed  Google Scholar 

Dyavanapalli J, Dergacheva O, Wang X, Mendelowitz D (2016) Parasympathetic vagal control of cardiac function. Curr Hypertens Rep 18:22. https://doi.org/10.1007/s11906-016-0630-0

Article  PubMed  Google Scholar 

Dyavanapalli J, Rodriguez J, Rocha dos Santos C, Escobar JB, Dwyer MK, Schloen J, Lee K min, Wolaver W, Wang X, Dergacheva O, Michelini LC, Schunke KJ, Spurney CF, Kay MW, Mendelowitz D, (2020) Activation of Oxytocin Neurons Improves Cardiac Function in a Pressure-Overload Model of Heart Failure. JACC Basic to Transl Sci 5:484–497. doi: https://doi.org/10.1016/j.jacbts.2020.03.007

Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. Methods Enzymol 10:41–47. https://doi.org/10.1016/0076-6879(67)10010-4

Article  CAS  Google Scholar 

Florea VG, Cohn JN (2014) The autonomic nervous system and heart failure. Circ Res 114:1815–1826. https://doi.org/10.1161/CIRCRESAHA.114.302589

Article  CAS  PubMed  Google Scholar 

Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11:255–265. https://doi.org/10.1038/nrcardio.2014.28

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frossard N, Naline E, Olgart Höglund C, Georges O, Advenier C (2005) Nerve growth factor is released by IL-1beta and induces hyperresponsiveness of the human isolated bronchus. Eur Respir J 26:15–20. https://doi.org/10.1183/09031936.05.00047804

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif