Sensitivity of an AI method for [18F]FDG PET/CT outcome prediction of diffuse large B-cell lymphoma patients to image reconstruction protocols

Crump M, Neelapu SS, Farooq U, Van Den Neste E, Kuruvilla J, Westin J, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8. https://doi.org/10.1182/blood-2017-03-769620.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54. https://doi.org/10.1007/s00259-014-2961-x.

Article  CAS  PubMed  Google Scholar 

Eertink JJ, van de Brug T, Wiegers SE, Zwezerijnen GJC, Pfaehler EAG, Lugtenburg PJ, et al. (18)F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma. Eur J Nucl Med Mol Imaging. 2022;49(3):932–42. https://doi.org/10.1007/s00259-021-05480-3.

Article  PubMed  Google Scholar 

Cottereau AS, Nioche C, Dirand AS, Clerc J, Morschhauser F, Casasnovas O, et al. (18)F-FDG PET dissemination features in diffuse large B-cell lymphoma are predictive of outcome. J Nucl Med. 2020;61(1):40–5. https://doi.org/10.2967/jnumed.119.229450.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmitz C, Huttmann A, Muller SP, Hanoun M, Boellaard R, Brinkmann M, et al. Dynamic risk assessment based on positron emission tomography scanning in diffuse large B-cell lymphoma: post-hoc analysis from the PETAL trial. Eur J Cancer. 2020;124:25–36. https://doi.org/10.1016/j.ejca.2019.09.027.

Article  CAS  PubMed  Google Scholar 

Jemaa S, Paulson JN, Hutchings M, Kostakoglu L, Trotman J, Tracy S, et al. Full automation of total metabolic tumor volume from FDG-PET/CT in DLBCL for baseline risk assessments. Cancer Imaging. 2022;22(1):39. https://doi.org/10.1186/s40644-022-00476-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weisman AJ, Kieler MW, Perlman SB, Hutchings M, Jeraj R, Kostakoglu L, et al. Convolutional neural networks for automated PET/CT detection of diseased lymph node burden in patients with lymphoma. Radiol Artif Intell. 2020;2(5):e200016. https://doi.org/10.1148/ryai.2020200016.

Article  PubMed  PubMed Central  Google Scholar 

Weisman AJ, Kim J, Lee I, McCarten KM, Kessel S, Schwartz CL, et al. Automated quantification of baseline imaging PET metrics on FDG PET/CT images of pediatric Hodgkin lymphoma patients. EJNMMI Phys. 2020;7(1):76. https://doi.org/10.1186/s40658-020-00346-3.

Article  PubMed  PubMed Central  Google Scholar 

Blanc-Durand P, Jegou S, Kanoun S, Berriolo-Riedinger A, Bodet-Milin C, Kraeber-Bodere F, et al. Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network. Eur J Nucl Med Mol Imaging. 2021;48(5):1362–70. https://doi.org/10.1007/s00259-020-05080-7.

Article  CAS  PubMed  Google Scholar 

Liu P, Zhang M, Gao X, Li B, Zheng G. Joint lymphoma lesion segmentation and prognosis prediction from baseline FDG-PET images via multitask convolutional neural networks. IEEE Access. 2022;10:81612–23. https://doi.org/10.1109/access.2022.3195906.

Article  Google Scholar 

Ferrández MC, Golla SSV, Eertink JJ, de Vries BM, Lugtenburg PJ, Wiegers SE, et al. An artificial intelligence method using 18F-FDG PET maximum intensity projections to predict 2-year time-to-progression in diffuse large B-cell lymphoma patients. 2023. https://doi.org/10.21203/rs.3.rs-2761494/v1

Ferrandez MC, Eertink JJ, Golla SSV, Wiegers SE, Zwezerijnen GJC, Pieplenbosch S, et al. Combatting the effect of image reconstruction settings on lymphoma [(18)F]FDG PET metabolic tumor volume assessment using various segmentation methods. EJNMMI Res. 2022;12(1):44. https://doi.org/10.1186/s13550-022-00916-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zwezerijnen GJC, Eertink JJ, Ferrandez MC, Wiegers SE, Burggraaff CN, Lugtenburg PJ, et al. Reproducibility of [18F]FDG PET/CT liver SUV as reference or normalisation factor. Eur J Nucl Med Mol Imaging. 2023;50(2):486–93. https://doi.org/10.1007/s00259-022-05977-5.

Article  CAS  PubMed  Google Scholar 

Orlhac F, Eertink JJ, Cottereau AS, Zijlstra JM, Thieblemont C, Meignan M, et al. A guide to comBat harmonization of imaging biomarkers in multicenter studies. J Nucl Med. 2022;63(2):172–9. https://doi.org/10.2967/jnumed.121.262464.

Article  PubMed  PubMed Central  Google Scholar 

Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27. https://doi.org/10.1093/biostatistics/kxj037.

Article  PubMed  Google Scholar 

Kaalep A, Burggraaff CN, Pieplenbosch S, Verwer EE, Sera T, Zijlstra J, et al. Quantitative implications of the updated EARL 2019 PET-CT performance standards. EJNMMI Phys. 2019;6(1):28. https://doi.org/10.1186/s40658-019-0257-8.

Article  PubMed  PubMed Central  Google Scholar 

Lugtenburg PJ, de Nully BP, van der Holt B, D’Amore FA, Koene HR, de Jongh E, et al. Rituximab-CHOP with early rituximab intensification for diffuse large B-cell lymphoma: a randomized phase III trial of the HOVON and the Nordic Lymphoma Group (HOVON-84). J Clin Oncol. 2020;38(29):3377–87. https://doi.org/10.1200/JCO.19.03418.

Article  CAS  PubMed  Google Scholar 

Schwyzer M, Martini K, Benz DC, Burger IA, Ferraro DA, Kudura K, et al. Artificial intelligence for detecting small FDG-positive lung nodules in digital PET/CT: impact of image reconstructions on diagnostic performance. Eur Radiol. 2020;30(4):2031–40. https://doi.org/10.1007/s00330-019-06498-w.

Article  PubMed  Google Scholar 

Sheikhbahaei S, Marcus C, Wray R, Rahmim A, Lodge MA, Subramaniam RM. Impact of point spread function reconstruction on quantitative 18F-FDG-PET/CT imaging parameters and inter-reader reproducibility in solid tumors. Nucl Med Commun. 2016;37(3):288–96.

Article  CAS  PubMed  Google Scholar 

Rahmim A, Qi J, Sossi V. Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys. 2013;40(6):064301. https://doi.org/10.1118/1.4800806.

Article  PubMed  PubMed Central  Google Scholar 

Boellaard R. Quantitative oncology molecular analysis suite: ACCURATE. J Nucl Med. 2018;59:1753.

Google Scholar 

Jha AK, Bradshaw TJ, Buvat I, Hatt M, Kc P, Liu C, et al. Nuclear medicine and artificial intelligence: best practices for evaluation (the RELAINCE guidelines). J Nucl Med. 2022. https://doi.org/10.2967/jnumed.121.263239.

Article  PubMed  PubMed Central  Google Scholar 

Fortin JP, Parker D, Tunc B, Watanabe T, Elliott MA, Ruparel K, et al. Harmonization of multi-site diffusion tensor imaging data. Neuroimage. 2017;161:149–70. https://doi.org/10.1016/j.neuroimage.2017.08.047.

Article  PubMed  Google Scholar 

Girum KB, Rebaud L, Cottereau AS, Meignan M, Clerc J, Vercellino L, et al. (18)F-FDG PET maximum intensity projections and artificial intelligence: a win-win combination to easily measure prognostic biomarkers in DLBCL patients. J Nucl Med. 2022. https://doi.org/10.2967/jnumed.121.263501.

Article  PubMed  PubMed Central  Google Scholar 

Barrington SF, Meignan M. Time to prepare for risk adaptation in lymphoma by standardizing measurement of metabolic tumor burden. J Nucl Med. 2019;60(8):1096–102. https://doi.org/10.2967/jnumed.119.227249.

Article  PubMed  PubMed Central  Google Scholar 

Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucle Med. 2004;24:1519–27.

Google Scholar 

Mikhaeel NG, Smith D, Dunn JT, Phillips M, Moller H, Fields PA, et al. Combination of baseline metabolic tumour volume and early response on PET/CT improves progression-free survival prediction in DLBCL. Eur J Nucl Med Mol Imaging. 2016;43(7):1209–19. https://doi.org/10.1007/s00259-016-3315-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ilyas H, Mikhaeel NG, Dunn JT, Rahman F, Moller H, Smith D, et al. Defining the optimal method for measuring baseline metabolic tumour volume in diffuse large B cell lymphoma. Eur J Nucl Med Mol Imaging. 2018;45(7):1142–54. https://doi.org/10.1007/s00259-018-3953-z.

Article  PubMed  PubMed Central  Google Scholar 

Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L, et al. A Postreconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018;59(8):1321–8. https://doi.org/10.2967/jnumed.117.199935.

Article  CAS  PubMed  Google Scholar 

Pfaehler E, Euba D, Rinscheid A, Hoekstra OS, Zijlstra J, van Sluis J, et al. Convolutional neural networks for automatic image quality control and EARL compliance of PET images. EJNMMI Phys. 2022;9(1):53. https://doi.org/10.1186/s40658-022-00468-w.

Article  PubMed  PubMed Central  Google Scholar 

Shortliffe EH, Sepulveda MJ. Clinical decision support in the era of artificial intelligence. JAMA. 2018;320(21):2199–200. https://doi.org/10.1001/jama.2018.17163.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif