Agbleke AA, Amitai A, Buenrostro JD et al (2020) Advances in chromatin and chromosome research: perspectives from multiple fields. Mol Cell 79:881–901
Article CAS PubMed PubMed Central Google Scholar
Banigan EJ, Stephens AD, Marko JF (2017) Mechanics and buckling of biopolymeric shells and cell nuclei. Biophys J 113:1654–1663
Article CAS PubMed PubMed Central Google Scholar
Banigan EJ, Tang W, van den Berg AA, Stocsits RR, Wutz G, Brandão HB, Busslinger GA, Peters J-M, Mirny LA (2023) Transcription shapes 3D chromatin organization by interacting with loop extrusion. Proc Natl Acad Sci U S A 120:e2210480120
Bennett A, Bechi B, Tighe A et al (2015) Cenp-E inhibitor GSK923295: novel synthetic route and use as a tool to generate aneuploidy. Oncotarget 6:20921–20932
Article PubMed PubMed Central Google Scholar
Berg IK, Currey ML, Gupta S, et al (2022) Transcription regulates bleb formation and stability independent of nuclear rigidity. bioRxiv. https://doi.org/10.1101/2022.11.14.516344
Burke LJ, Zhang R, Bartkuhn M et al (2005) CTCF binding and higher order chromatin structure of the H19 locus are maintained in mitotic chromatin. EMBO J 24:3291–3300
Article CAS PubMed PubMed Central Google Scholar
Currey ML, Kandula V, Biggs R et al (2022) A versatile micromanipulation apparatus for biophysical assays of the cell nucleus. Cell Mol Bioeng. https://doi.org/10.1007/s12195-022-00734-y
Defossez P-A, Kelly KF, Filion GJP et al (2005) The human enhancer blocker CTC-binding factor interacts with the transcription factor Kaiso. J Biol Chem 280:43017–43023
Article CAS PubMed Google Scholar
Denais CM, Gilbert RM, Isermann P et al (2016) Nuclear envelope rupture and repair during cancer cell migration. Science 352:353–358
Article CAS PubMed PubMed Central Google Scholar
Flynn PJ, Koch PD, Mitchison TJ (2021) Chromatin bridges, not micronuclei, activate cGAS after drug-induced mitotic errors in human cells. Proc Natl Acad Sci USA 118:e2103585118
Article CAS PubMed PubMed Central Google Scholar
Funk L, Su K-C, Ly J et al (2022) The phenotypic landscape of essential human genes. Cell 185:4634–4653.e22
Article CAS PubMed Google Scholar
Furusawa T, Rochman M, Taher L et al (2015) Chromatin decompaction by the nucleosomal binding protein HMGN5 impairs nuclear sturdiness. Nat Commun 6:6138
Article CAS PubMed Google Scholar
Gilbert N, Naughton C, Huidobro C et al (2022) Human centromere formation activates transcription and opens chromatin fibre structure. Research Square
Gisselsson D, Björk J, Höglund M et al (2001) Abnormal nuclear shape in solid tumors reflects mitotic instability. Am J Pathol 158:199–206
Article CAS PubMed PubMed Central Google Scholar
Guacci V, Koshland D, Strunnikov A (1997) A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91:47–57
Article CAS PubMed PubMed Central Google Scholar
Hansen AS, Pustova I, Cattoglio C et al (2017) CTCF and cohesin regulate chromatin loop stability with distinct dynamics. Elife 6. https://doi.org/10.7554/elife.25776
Harper JV (2005) Synchronization of cell populations in G1/S and G2/M phases of the cell cycle. Methods Mol Biol 296:157–166
Hauf S, Waizenegger IC, Peters JM (2001) Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293:1320–1323
Article CAS PubMed Google Scholar
Helfand BT, Wang Y, Pfleghaar K et al (2012) Chromosomal regions associated with prostate cancer risk localize to lamin B-deficient microdomains and exhibit reduced gene transcription. J Pathol 226:735–745
Article CAS PubMed Google Scholar
Hobson CM, Kern M, O’Brien ET 3rd et al (2020) Correlating nuclear morphology and external force with combined atomic force microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear mechanics. Mol Biol Cell 31:1788–1801
Article CAS PubMed PubMed Central Google Scholar
Kaczmarczyk LS, Levi N, Segal T et al (2022) CTCF supports preferentially short lamina-associated domains. Chromosom Res 30:123–136
Kalukula Y, Stephens AD, Lammerding J, Gabriele S (2022) Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-022-00480-z
Lawrimore CJ, Bloom K (2019) Common features of the pericentromere and nucleolus. Genes (Basel) 10:1029
Article CAS PubMed Google Scholar
Le Berre M, Aubertin J, Piel M (2012) Fine control of nuclear confinement identifies a threshold deformation leading to lamina rupture and induction of specific genes. Integr Biol (Camb) 4:1406–1414
Levine MS, Holland AJ (2018) The impact of mitotic errors on cell proliferation and tumorigenesis. Genes Dev 32:620–638
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Malureanu L, Jeganathan KB et al (2009) CAML loss causes anaphase failure and chromosome missegregation. Cell Cycle 8:940–949
Article CAS PubMed Google Scholar
Matsusaka T, Imamoto N, Yoneda Y, Yanagida M (1998) Mutations in fission yeast Cut15, an importin alpha homolog, lead to mitotic progression without chromosome condensation. Curr Biol 8:1031–1034
Article CAS PubMed Google Scholar
Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45
Article CAS PubMed Google Scholar
Moore JM, Rabaia NA, Smith LE et al (2012) Loss of maternal CTCF is associated with peri-implantation lethality of Ctcf null embryos. PLoS One 7:e34915
Article CAS PubMed PubMed Central Google Scholar
Nora EP, Goloborodko A, Valton A-L et al (2017) Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169:930–944.e22
Article CAS PubMed PubMed Central Google Scholar
Ohshima S (2008) Abnormal mitosis in hypertetraploid cells causes aberrant nuclear morphology in association with H2O2-induced premature senescence. Cytometry A 73:808–815
Pfeifer CR, Tobin MP, Cho S et al (2022) Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus 13:129–143
Article CAS PubMed PubMed Central Google Scholar
Pfeifer CR, Xia Y, Zhu K et al (2018) Constricted migration increases DNA damage and independently represses cell cycle. Mol Biol Cell 29:1948–1962
Article CAS PubMed PubMed Central Google Scholar
Pho M, Berrada Y, Gunda A, et al (2022) Actin contraction controls nuclear blebbing and rupture independent of actin confinement. bioRxiv. https://doi.org/10.1101/2022.12.01.518663
Pugacheva EM, Kubo N, Loukinov D et al (2020) CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention. Proc Natl Acad Sci USA 117:2020–2031
Article CAS PubMed PubMed Central Google Scholar
Putkey FR, Cramer T, Morphew MK et al (2002) Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev Cell 3:351–365
Article CAS PubMed Google Scholar
Raab M, Gentili M, de Belly H et al (2016) ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352:359–362
Article CAS PubMed Google Scholar
Ribeiro SA, Gatlin JC, Dong Y et al (2009) Condensin regulates the stiffness of vertebrate centromeres. Mol Biol Cell 20:2371–2380
Article CAS PubMed PubMed Central Google Scholar
Rubio ED, Reiss DJ, Welcsh PL et al (2008) CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA 105:8309–8314
Article CAS PubMed PubMed Central Google Scholar
Samejima I, Matsumoto T, Nakaseko Y et al (1993) Identification of seven new cut genes involved in Schizosaccharomyces pombe mitosis. J Cell Sci 105(Pt 1):135–143
Seitan VC, Faure AJ, Zhan Y et al (2013) Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Res 23:2066–2077
Comments (0)