A review of robotic-assisted total hip arthroplasty

Charnley J. The long-term results of low-friction arthroplasty of the hip performed as a primary intervention. J Bone Joint Surg. 1972;54(1):61–76.

Article  Google Scholar 

Knight SR, Aujla R, Biswas SP, Total Hip Arthroplasty-over 100 years of operative history. Orthopedic reviews, 2011. 3(2).

Bozic KJ, et al. The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am. 2009;91(1):128–33.

Article  Google Scholar 

King J, et al. Minimally invasive total knee arthroplasty compared with traditional total knee arthroplasty. Assessment of the learning curve and the postoperative recuperative period. J Bone Joint Surg Am. 2007;89(7):1497–503.

Article  Google Scholar 

Jacofsky DJ, Allen M. Robotics in arthroplasty: a comprehensive review. J Arthroplasty. 2016;31(10):2353–63.

Article  Google Scholar 

Subramanian P, et al. A review of the evolution of robotic-assisted total hip arthroplasty. Hip Int. 2019;29(3):232–8.

Article  Google Scholar 

Paul HA, et al. Development of a surgical robot for cementless total hip arthroplasty. Clin Orthopaedics and Related Res. 1992;285:57–66.

Article  Google Scholar 

Taylor K. Robodoc: study tests robot’s use in hip surgery. Hospitals. 1993;67(9):46.

Google Scholar 

Pransky J. ROBODOC-surgical robot success story. Ind Robot: An Int J. 1997;24(3):231–3.

Article  Google Scholar 

Schulz AP, et al. Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int J Med Robot Comput Assisted Surg. 2007;3(4):301–6.

Article  Google Scholar 

Bargar WL, et al. Fourteen year follow-up of randomized clinical trials of active robotic-assisted total hip arthroplasty. J Arthroplasty. 2018;33(3):810–4.

Article  Google Scholar 

Spencer EH. The ROBODOC clinical trial: a robotic assistant for total hip arthroplasty. Orthop Nurs. 1996;15(1):9–14.

Article  Google Scholar 

Bargar WL, Bauer A, Börner M. Primary and revision total hip replacement using the Robodoc (R) system. Clin Orthopaedics and Related Res. 1998;354:82–91.

Article  Google Scholar 

Honl M, et al. Comparison of robotic-assisted and manual implantation of a primary total hip replacement: a prospective study. JBJS. 2003;85(8):1470–8.

Article  Google Scholar 

Wasterlain AS, et al. Navigation and robotics in total hip arthroplasty. JBJS Rev. 2017;5(3): e2.

Article  Google Scholar 

Wu L-D, Hahne H, Hassenpflug J. The dimensional accuracy of preparation of femoral cavity in cementless total hip arthroplasty. J Zhejiang Univ-SCIENCE A. 2004;5:1270–8.

Article  Google Scholar 

Mazoochian F, et al. Low accuracy of stem implantation in THR using the CASPAR-system anteversion measurements in 10 hips. Acta Orthop Scand. 2004;75(3):261–4.

Article  Google Scholar 

Siebel T, Käfer W. Clinical outcome after robot-assisted versus conventionally implanted hip arthroplasty: prospective, controlled study of 71 patients. Z Orthop Ihre Grenzgeb. 2005;143:391–8.

Article  Google Scholar 

Barrett A, et al. Computer-assisted hip resurfacing surgery using the Acrobot® navigation system. Proc Inst Mech Eng [H]. 2007;221(7):773–85.

Article  Google Scholar 

Tarwala R, Dorr LD. Robotic assisted total hip arthroplasty using the MAKO platform. Curr Rev Musculoskelet Med. 2011;4:151–6.

Article  Google Scholar 

Chen X, et al. Robotic-assisted compared with conventional total hip arthroplasty: systematic review and meta-analysis. Postgrad Med J. 2018;94(1112):335–41.

Article  Google Scholar 

Li C, et al. Clinical application of robotic orthopedic surgery: a bibliometric study. BMC Musculoskelet Disord. 2021;22:1–14.

Article  Google Scholar 

Simon DA, Lavallée S. Medical imaging and registration in computer assisted surgery. Clin Orthopaedics and Related Res (1976–2007). 1998;354:17–27.

Article  Google Scholar 

Yao J, et al. A C-arm fluoroscopy-guided progressive cut refinement strategy using a surgical robot. Comput Aided Surg. 2000;5(6):373–90.

Article  Google Scholar 

Chang J-D, et al. The evolution of computer-assisted total hip arthroplasty and relevant applications. Hip & pelvis. 2017;29(1):1–14.

Article  MathSciNet  Google Scholar 

Sugano N. Computer-assisted orthopaedic surgery and robotic surgery in total hip arthroplasty. Clin Orthop Surg. 2013;5(1):1–9.

Article  MathSciNet  Google Scholar 

Nishihara S, et al. Clinical accuracy evaluation of femoral canal preparation using the ROBODOC system. J Orthop Sci. 2004;9:452–61.

Article  Google Scholar 

Nogler M, et al. Knee pain caused by a fiducial marker in the medial femoral condyle: a clinical and anatomic study of 20 cases. Acta Orthop Scand. 2001;72(5):477–80.

Article  Google Scholar 

Nakamura N, et al. Robot-assisted primary cementless total hip arthroplasty using surface registration techniques: a short-term clinical report. Int J Comput Assist Radiol Surg. 2009;4:157–62.

Article  Google Scholar 

Qin J et al. New technique: practical procedure of robotic arm-assisted (MAKO) total hip arthroplasty. Ann Trans Med, 2018. 6(18).

Bullock EK, et al. Robotics in total hip arthroplasty: current concepts. J Clin Med. 2022;11(22):6674.

Article  Google Scholar 

Perazzini P, et al. The Mako™ robotic arm-assisted total hip arthroplasty using direct anterior approach: surgical technique, skills and pitfalls. Acta Bio Medica: Atenei Parmensis. 2020;91:21.

Google Scholar 

Gallo J, Havranek V, Zapletalova J. Risk factors for accelerated polyethylene wear and osteolysis in ABG I total hip arthroplasty. Int Orthop. 2010;34:19–26.

Article  Google Scholar 

Leslie IJ, et al. High cup angle and microseparation increase the wear of hip surface replacements. Clin Orthopaedics and Related Res®. 2009;467(9):2259–65.

Article  Google Scholar 

Kennedy J, et al. Effect of acetabular component orientation on recurrent dislocation, pelvic osteolysis, polyethylene wear, and component migration. J Arthroplasty. 1998;13(5):530–4.

Article  Google Scholar 

Yamaguchi M, et al. The spatial location of impingement in total hip arthroplasty. J Arthroplasty. 2000;15(3):305–13.

Article  Google Scholar 

Lewinnek GE, et al. Dislocations after total hip-replacement arthroplasties. JBJS. 1978;60(2):217–20.

Article  Google Scholar 

Callanan MC, et al. The John Charnley Award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin Orthopaedics and Related Res®. 2011;469:319–29.

Article  Google Scholar 

Jolles B, Zangger P. Factors predisposing to dislocation after primary total hip arthroplasty: a multivariate analysis. J Arthroplasty. 2002;17(3):282–8.

Article  Google Scholar 

Widmer KH, Zurfluh B. Compliant positioning of total hip components for optimal range of motion. J Orthop Res. 2004;22(4):815–21.

Article  Google Scholar 

Maruyama M, et al. Morphologic features of the acetabulum and femur: anteversion angle and implant positioning. Clin Orthopaedics and Related Res®. 2001;393:52–65.

Article  Google Scholar 

McKibbin B. Anatomical factors in the stability of the hip joint in the newborn. J Bone Joint Surg. 1970;52(1):148–59.

Article  Google Scholar 

Dorr LD, et al. Combined anteversion technique for total hip arthroplasty. Clin Orthop Relat Res. 2009;467:119–27.

Article  Google Scholar 

Nakashima Y, et al. Combined anteversion technique reduced the dislocation in cementless total hip arthroplasty. Int Orthop. 2014;38:27–32.

Article  Google Scholar 

Kayani B, et al. The current role of robotics in total hip arthroplasty. EFORT Open Rev. 2019;4(11):618.

Article  Google Scholar 

Haffer H, et al. The impact of spinopelvic mobility on arthroplasty: implications for hip and spine surgeons. J Clin Med. 2020;9(8):2569.

Article  Google Scholar 

Stefl M, et al. Spinopelvic mobility and acetabular component position for total hip arthroplasty. The Bone & Joint J. 2017;99:37–45.

Article  Google Scholar 

Sicat CS, et al. Intraoperative technology use improves accuracy of functional safe zone targeting in total hip arthroplasty. J Arthroplasty. 2022;37(7):S540–5.

Article  Google Scholar 

Kouyoumdjian P et al., Current concepts in robotic total hip arthroplasty. SICOT-J, 2020. 6.

Jerabek S et al. Accuracy of cup positioning and achieving desired hip length and offset following robotic THA. in 14th annual CAOS Meeting. 2014.

Nawabi DH, et al. Haptically guided robotic technology in total hip arthroplasty: a cadaveric investigation. Proc Inst Mech Eng [H]. 2013;227(3):302–9.

Article  Google Scholar 

Dounchis J et al. A MULTI-CENTRE EVALUATION OF ACETABULAR CUP POSITINING IN ROBOTIC-ASSISTED TOTAL HIP ARTHROPLASTY. in Orthopaedic Proceedings. 2013. The British Editorial Society of Bone & Joint Surgery.

Elson L, et al. Precision of acetabular cup placement in robotic integrated total hip arthroplasty. Hip Int. 2015;25(6):531–6.

Article  Google Scholar 

Domb BG, et al. Comparison of robotic-assisted and conventional acetabular cup placement in THA: a matched-pair controlled study. Clin Orthopaedics and Related Res®. 2014;472:329–36.

Article  Google Scholar 

Domb BG, et al. Accuracy of component positioning in 1980 total hip arthroplasties: a comparative analysis by surgical technique and mode of guidance. J Arthroplasty. 2015;30(12):2208–18.

Article  Google Scholar 

Tsai TY, et al. Does haptic robot-assisted total hip arthroplasty better restore native acetabular and femoral anatomy? Int J Med Robot Comput Assisted Surg. 2016;12(2):288–95.

Article  Google Scholar 

Kamara E, et al. Adoption of robotic vs fluoroscopic guidance in total hip arthroplasty: is acetabular positioning improved in the learning curve? J Arthroplasty. 2017;32(1):125–30.

Article  Google Scholar 

Nd IR, et al. Robotic-assisted total hip arthroplasty: outcomes at minimum two-year follow-up. Surg Technol Int. 2017;30:365–72.

Google Scholar 

留言 (0)

沒有登入
gif