Preventing mitochondrial reverse electron transport as a strategy for cardioprotection

Adam J, Yang M, Bauerschmidt C, Kitagawa M, O’Flaherty L, Maheswaran P, Özkan G, Sahgal N, Baban D, Kato K, Saito K, Iino K, Igarashi K, Stratford M, Pugh C, Tennant DA, Ludwig C, Davies B, Ratcliffe PJ, El-Bahrawy M, Ashrafian H, Soga T, Pollard PJ (2013) A role for cytosolic fumarate hydratase in urea cycle metabolism and renal neoplasia. Cell Rep 3:1440–1448. https://doi.org/10.1016/j.celrep.2013.04.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agip AA, Blaza JN, Bridges HR, Viscomi C, Rawson S, Muench SP, Hirst J (2018) Mitochondria in two biochemically defined states. Nat Struct Mol Biol 25:1–12. https://doi.org/10.1038/s41594-018-0073-1

Article  CAS  Google Scholar 

Agip A-NA, Blaza JN, Fedor JG, Hirst J (2019) Mammalian respiratory complex I through the lens of cryo-EM. Annu Rev Biophys 48:165–184. https://doi.org/10.1146/annurev-biophys-052118-115704

Article  CAS  PubMed  Google Scholar 

Aldakkak M, Stowe DF, Chen Q, Lesnefsky EJ, Camara AKS (2008) Inhibited mitochondrial respiration by amobarbital during cardiac ischaemia improves redox state and reduces matrix Ca2+ overload and ROS release. Cardiovasc Res 77:406–415. https://doi.org/10.1016/j.cardiores.2007.08.008

Article  CAS  PubMed  Google Scholar 

Alexopoulos SJ, Chen S-Y, Brandon AE, Salamoun JM, Byrne FL, Garcia CJ, Beretta M, Olzomer EM, Shah DP, Philp AM, Hargett SR, Lawrence RT, Lee B, Sligar J, Carrive P, Tucker SP, Philp A, Lackner C, Turner N, Cooney GJ, Santos WL, Hoehn KL (2020) Mitochondrial uncoupler BAM15 reverses diet-induced obesity and insulin resistance in mice. Nat Commun 11:2397. https://doi.org/10.1038/s41467-020-16298-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrienko TN, Pasdois P, Pereira GC, Ovens MJ, Halestrap AP (2017) The role of succinate and ROS in reperfusion injury—A critical appraisal. J Mol Cell Cardiol 110:1–4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashrafian H, Czibik G, Bellahcene M, Aksentijević D, Smith AC, Mitchell SJ, Dodd MS, Kirwan J, Byrne JJ, Ludwig C, Isackson H, Yavari A, Støttrup NB, Contractor H, Cahill TJ, Sahgal N, Ball DR, Birkler RID, Hargreaves I, Tennant DA, Land J, Lygate CA, Johannsen M, Kharbanda RK, Neubauer S, Redwood C, de Cabo R, Ahmet I, Talan M, Günther UL, Robinson AJ, Viant MR, Pollard PJ, Tyler DJ, Watkins H (2012) Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metab 15:361–371. https://doi.org/10.1016/j.cmet.2012.01.017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Babot M, Birch A, Labarbuta P, Galkin A (2014) Characterisation of the active/de-active transition of mitochondrial complex I. Biochimica et Biophysica Acta (BBA) 1837:1083–1092. https://doi.org/10.1016/j.bbabio.2014.02.018

Article  CAS  PubMed  Google Scholar 

Bae J, Salamon RJ, Brandt EB, Paltzer WG, Zhang Z, Britt EC, Hacker TA, Fan J, Mahmoud AI (2021) Malonate promotes adult cardiomyocyte proliferation and heart regeneration. Circulation 143:1973–1986. https://doi.org/10.1161/CIRCULATIONAHA.120.049952

Article  CAS  PubMed  Google Scholar 

Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662. https://doi.org/10.1038/nature03434

Article  CAS  PubMed  Google Scholar 

Bak MI, Ingwall JS (1994) Acidosis during ischemia promotes adenosine triphosphate resynthesis in postischemic rat heart. In vivo regulation of 5’-nucleotidase. J Clin Investig 93:40–49. https://doi.org/10.1172/JCI116974

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balakrishnan K, Nimmanapalli R, Ravandi F, Keating MJ, Gandhi V (2006) Forodesine, an inhibitor of purine nucleoside phosphorylase, induces apoptosis in chronic lymphocytic leukemia cells. Blood 108:2392–2398. https://doi.org/10.1182/blood-2006-03-007468

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bambouskova M, Gorvel L, Lampropoulou V, Sergushichev A, Loginicheva E, Johnson K, Korenfeld D, Mathyer ME, Kim H, Huang L-H, Duncan D, Bregman H, Keskin A, Santeford A, Apte RS, Sehgal R, Johnson B, Amarasinghe GK, Soares MP, Satoh T, Akira S, Hai T, de Guzman SC, Auclair K, Roddy TP, Biller SA, Jovanovic M, Klechevsky E, Stewart KM, Randolph GJ, Artyomov MN (2018) Electrophilic properties of itaconate and derivatives regulate the IκBζ–ATF3 inflammatory axis. Nature 556:501–504. https://doi.org/10.1038/s41586-018-0052-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bates L, Krause-Hauch M, Wang H, Fatmi MK, Li Z, Chen Q, Ren D, Li J, Lesnefsky EJ (2023) Acute, high dose metformin therapy at reperfusion decreases infarct size in the high-risk aging heart. Aging Dis. https://doi.org/10.14336/AD.2023.0205

Article  PubMed  Google Scholar 

Beach TE, Prag HA, Pala L, Logan A, Huang MM, Gruszczyk AV, Martin JL, Mahbubani K, Hamed MO, Hosgood SA, Nicholson ML, James AM, Hartley RC, Murphy MP, Saeb-Parsy K (2020) Targeting succinate dehydrogenase with malonate ester prodrugs decreases renal ischemia reperfusion injury. Redox Biol 36:101640. https://doi.org/10.1016/j.redox.2020.101640

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernardi P, Di Lisa F (2015) The mitochondrial permeability transition pore: Molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 78:100–106. https://doi.org/10.1016/j.yjmcc.2014.09.023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306. https://doi.org/10.1038/81834

Article  CAS  PubMed  Google Scholar 

Bickler PE, Buck LT (2007) Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol 69:145–170. https://doi.org/10.1146/annurev.physiol.69.031905.162529

Article  CAS  PubMed  Google Scholar 

Birder LA, Wolf-Johnston A, Wein AJ, Cheng F, Grove-Sullivan M, Kanai AJ, Watson AM, Stoltz D, Watkins SC, Robertson AM, Newman D, Dmochowski RR, Jackson EK (2020) Purine nucleoside phosphorylase inhibition ameliorates age-associated lower urinary tract dysfunctions. JCI Insight. https://doi.org/10.1172/jci.insight.140109

Article  PubMed  PubMed Central  Google Scholar 

Borkowski T, Lipinski M, Kaminski R, Krzyminska-Stasiuk E, Langowska M, Raczak G, Slominska EM, Smolenski RT (2008) Modulation of AMP deaminase in rat hearts subjected to ischemia and reperfusion by purine riboside. Nucleosides Nucleotides Nucleic Acids 27:876–880. https://doi.org/10.1080/15257770802146551

Article  CAS  PubMed  Google Scholar 

Bøtker HE, Cabrera-Fuentes HA, Ruiz-Meana M, Heusch G, Ovize M (2020) Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J Cell Mol Med 24:2717–2729. https://doi.org/10.1111/jcmm.14953

Article  PubMed  PubMed Central  Google Scholar 

Brennan J, Berry R, Baghai M, Duchen M, Shattock M (2006) FCCP is cardioprotective at concentrations that cause mitochondrial oxidation without detectable depolarisation. Cardiovasc Res 72:322–330. https://doi.org/10.1016/j.cardiores.2006.08.006

Article  CAS  PubMed  Google Scholar 

Brennan J, Southworth R, Medina R, Davidson S, Duchen M, Shattock M (2006) Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc Res 72:313–321. https://doi.org/10.1016/j.cardiores.2006.07.019

Article  CAS  PubMed  Google Scholar 

Bridges HR, Blaza JN, Yin Z, Chung I, Pollak MN (1979) Hirst J (2023) Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science 379:351–357. https://doi.org/10.1126/science.ade3332

Article  CAS  Google Scholar 

Bridges HR, Jones AJY, Pollak MN, Hirst J (2014) Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J 462:475–487. https://doi.org/10.1042/BJ20140620

Article  CAS  PubMed  Google Scholar 

Bundgaard A, Gruszczyk AV, Prag HA, Williams C, McIntyre A, Ruhr IM, James AM, Galli GLJ, Murphy MP, Fago A (2023) Low production of mitochondrial reactive oxygen species after anoxia and reoxygenation in turtle hearts. J Exp Biol. https://doi.org/10.1242/jeb.245516

Article  PubMed  Google Scholar 

Bundgaard A, James AM, Gruszczyk AV, Martin J, Murphy MP, Fago A (2019) Metabolic adaptations during extreme anoxia in the turtle heart and their implications for ischemia−reperfusion injury. Sci Rep 9:2850. https://doi.org/10.1038/s41598-019-39836-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burger N, James AM, Mulvey JF, Hoogewijs K, Ding S, Fearnley IM, Loureiro-López M, Norman AAI, Arndt S, Mottahedin A, Sauchanka O, Hartley RC, Krieg T, Murphy MP (2022) ND3 Cys39 in complex I is exposed during mitochondrial respiration. Cell Chem Biol 29:636-649.e14. https://doi.org/10.1016/j.chembiol.2021.10.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cadenas E, Boveris A, Ragan CI, Stoppani AOM (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180:248–257. https://doi.org/10.1016/0003-9861(77)90035-2

Article  CAS  PubMed 

留言 (0)

沒有登入
gif