A self-healable and bioadhesive acacia gum polysaccharide-based injectable hydrogel for wound healing acceleration

Xu J, Liu Y, Hsu SH. Hydrogels based on schiff base linkages for biomedical applications. Molecules. 2019;24(16): 3005. https://doi.org/10.3390/molecules24163005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parwani L, Bhatnagar M, Bhatnagar A, Sharma V, Sharma V. Gum acacia-PVA hydrogel blends for wound healing. Vegetos. 2019;32(1):78–91. https://doi.org/10.1007/s42535-019-00009-4.

Article  Google Scholar 

Ahmadian Z, Gheybi H, Adeli M. Efficient wound healing by antibacterial property: advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J Drug Deliv Sci Technol. 2022;103458. .https://doi.org/10.1016/j.jddst.2022.103458

Zohreband Z, Adeli M, Zebardasti A. Self-healable and flexible supramolecular gelatin/MoS2 hydrogels with molecular recognition properties. Int J Biol Macromol. 2021;182:2048–55. https://doi.org/10.1016/j.ijbiomac.2021.05.106.

Article  CAS  PubMed  Google Scholar 

Sattari S, Dadkhah Tehrani A, Adeli M. pH-responsive hybrid hydrogels as antibacterial and drug delivery systems. Polymers. 2018;10(6): 660. https://doi.org/10.3390/polym10060660.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mescher AL. Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. Regeneration. 2017;4(2):39–53. https://doi.org/10.1002/reg2.77.

Article  PubMed  PubMed Central  Google Scholar 

Atala A, Irvine DJ, Moses M, Shaunak S. Wound healing versus regeneration: role of the tissue environment in regenerative medicine. MRS Bull. 2010;35(8):597–606. https://doi.org/10.1557/mrs2010.528.

Article  CAS  Google Scholar 

Giano MC, Ibrahim Z, Medina SH, Sarhane KA, Christensen JM, Yamada Y, Brandacher G, Schneider JP. Injectable bioadhesive hydrogels with innate antibacterial properties. Nat Commun. 2014;5(1):4095. https://doi.org/10.1038/ncomms5095.

Article  CAS  PubMed  Google Scholar 

Yan S, Wang W, Li X, Ren J, Yun W, Zhang K, Li G, Yin J. Preparation of mussel-inspired injectable hydrogels based on dual-functionalized alginate with improved adhesive, self-healing, and mechanical properties. J Mater Chem B. 2018;6(40):6377–90. https://doi.org/10.1039/C8TB01928B.

Article  CAS  PubMed  Google Scholar 

Sundaram MN, Pradeep A, Varma PK, Jayakumar R. Different forms of chitosan and its derivatives as hemostatic agent and tissue sealants. 2021. pp. 1–28; https://doi.org/10.1007/12_2021_98.

Pei X, Wang J, Cong Y, Fu J. Recent progress in polymer hydrogel bioadhesives. J Polym Sci. 2021;59(13):1312–37. https://doi.org/10.1002/pol.20210249.

Article  CAS  Google Scholar 

Nam S, Mooney D. Polymeric tissue adhesives. Chem Rev. 2021;121(18):11336–84. https://doi.org/10.1021/acs.chemrev.0c00798.

Article  CAS  PubMed  Google Scholar 

Guo J, Sun W, Kim JP, Lu X, Li Q, Lin M, Mrowczynski O, Rizk EB, Cheng J, Qian G, Yang J. Development of tannin-inspired antimicrobial bioadhesives. Acta Biomater. 2018;72:35–44. https://doi.org/10.1016/j.actbio.2018.03.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu C, Shen L, Lu Y, Hu C, Liang Z, Long L, Ning N, Chen J, Guo Y, Yang Z, Hu X. Intrinsic antibacterial and conductive hydrogels based on the distinct bactericidal effect of polyaniline for infected chronic wound healing. ACS Appl Mater Interfaces. 2021;13(44):52308–20. https://doi.org/10.1021/acsami.1c14088.

Article  CAS  Google Scholar 

Tu Y, Chen N, Li C, Liu H, Zhu R, Chen S, Xiao Q, Liu J, Ramakrishna S, He L. Advances in injectable self-healing biomedical hydrogels. Acta Biomater. 2019;90:1–20. https://doi.org/10.1016/j.actbio.2019.03.057.

Article  CAS  PubMed  Google Scholar 

Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials. 2017;122:34–47. https://doi.org/10.1016/j.biomaterials.2017.01.011.

Article  CAS  PubMed  Google Scholar 

Geng H, Dai Q, Sun H, Zhuang L, Song A, Caruso F, Hao J, Cui J. Injectable and sprayable polyphenol-based hydrogels for controlling hemostasis. ACS Appl Bio Mater. 2020;3(2):1258–66. https://doi.org/10.1021/acsabm.9b01138.

Article  CAS  PubMed  Google Scholar 

Pourshahrestani S, Zeimaran E, Kadri NA, Mutlu N, Boccaccini AR. Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing. Adv Healthc Mater. 2020;9(20): 2000905. https://doi.org/10.1002/adhm.202000905.

Article  CAS  Google Scholar 

Aduba DC Jr, Yang H. Polysaccharide fabrication platforms and biocompatibility assessment as candidate wound dressing materials. Bioengineering. 2017;4(1):1. https://doi.org/10.3390/bioengineering4010001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel S, Goyal A. Applications of natural polymer gum arabic: a review. Int J Food Prop. 2015;18(5):986. https://doi.org/10.1080/10942912.2013.809541.

Article  CAS  Google Scholar 

Ibekwe CA, Oyatogun GM, Esan TA, Oluwasegun KM. Synthesis and characterization of chitosan/gum arabic nanoparticles for bone regeneration. Am J Mater Sci Eng. 2017;5(1). .https://doi.org/10.12691/ajmse-5-1-4

Sanchez C, Nigen M, Tamayo VM, Doco T, Williams P, Amine C, Renard D. Acacia gum: history of the future. Food Hydrocolloids. 2018;78:140–60. https://doi.org/10.1016/j.foodhyd.2017.04.008.

Article  CAS  Google Scholar 

Singh B, Sharma S, Dhiman A. Acacia gum polysaccharide based hydrogel wound dressings: synthesis, characterization, drug delivery and biomedical properties. Carbohydr Polym. 2017;165:294–303. https://doi.org/10.1016/j.carbpol.2017.02.039.

Article  CAS  PubMed  Google Scholar 

Elblbesy MA, Hanafy TA, Shawki MM. Polyvinyl alcohol/gum arabic hydrogel preparation and cytotoxicity for wound healing improvement. E-Polymers. 2022;22(1):566. https://doi.org/10.1515/epoly-2022-0052.

Article  CAS  Google Scholar 

Raguvaran R, Manuja BK, Chopra M, Thakur R, Anand T, Kalia A, Manuja A. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. Int J Biol Macromol. 2017;96:185–91. https://doi.org/10.1016/j.ijbiomac.2016.12.009.

Article  CAS  PubMed  Google Scholar 

Li M, Li H, Li X, Zhu H, Xu Z, Liu L, Ma J, Zhang M. A bioinspired alginate-gum arabic hydrogel with micro-/nanoscale structures for controlled drug release in chronic wound healing. ACS Appl Mater Interfaces. 2017;9(27):22160–75. https://doi.org/10.1021/acsami.7b04428.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye J, Yang G, Zhang J, Xiao Z, He L, Zhang H, Liu Q. Preparation and characterization of gelatin-polysaccharide composite hydrogels for tissue engineering. PeerJ. 2021;9: e11022. https://doi.org/10.7717/peerj.11022.

Article  PubMed  PubMed Central  Google Scholar 

Bealer EJ, Onissema-Karimu S, Rivera-Galletti A, Francis M, Wilkowski J, Salas-de la Cruz D, Hu X. Protein–polysaccharide composite materials: fabrication and applications. Polymers. 2020;12(2): 464. https://doi.org/10.3390/polym12020464.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amaya-Chantaca NJ, Caldera-Villalobos M, Claudio-Rizo JA, Flores-Guía TE, Becerra-Rodríguez JJ, Soriano-Corral F, Herrera-Guerrero A. Semi-IPN hydrogels of collagen and gum arabic with antibacterial capacity and controlled release of drugs for potential application in wound healing. Prog Biomater. 2023;12(1):25–40. https://doi.org/10.1007/s40204-022-00210-w.

Article  CAS  PubMed  Google Scholar 

Ahmadian Z, Correia A, Hasany M, Figueiredo P, Dobakhti F, Eskandari MR, Hosseini SH, Abiri R, Khorshid S, Hirvonen J, Santos HA. A hydrogen-bonded extracellular matrix‐mimicking bactericidal hydrogel with radical scavenging and hemostatic function for pH‐responsive wound healing acceleration. Adv Health Mater. 2021;10(3):2001122. https://doi.org/10.1002/adhm.202001122.

Article  CAS  Google Scholar 

Becker LC, Bergfeld WF, Belsito DV, Klaassen CD, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Final report of the safety assessment of allantoin and its related complexes. Int J Toxicol. 2010;29(3suppl):84S – 97. https://doi.org/10.1177/1091581810362805.

Article  CAS  PubMed  Google Scholar 

Li QX, Song BZ, Yang ZQ, Fan HL. Electrolytic conductivity behaviors and solution conformations of chitosan in different acid solutions. Carbohydr Polym. 2006;63(2):272. https://doi.org/10.1016/j.carbpol.2005.09.024.

Article  CAS  Google Scholar 

Gupta KC, Jabrail FH. Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman. Carbohydr Res. 2006;341(6):744. https://doi.org/10.1016/j.carres.2006.02.003.

Article  CAS  PubMed  Google Scholar 

Gupta KC, Jabrail FH. Glutaraldehyde cross-linked chitosan microspheres for controlled release of centchroman. Carbohydr Res. 2007;342(15):2244–52. https://doi.org/10.1016/j.carres.2007.06.009.

Article  CAS  PubMed  Google Scholar 

Dherange DD, Pangavane MR. Review on: excipients used in herbal drug technology. Int J Res Publ Rev. 2022;3(2):465–475.

Musa HH, Ahmed AA, Musa TH. Chemistry, biological, and pharmacological properties of gum Arabic. Bioactive Molecules in Food; Springer International Publishing AG: Cham, Switzerland. 2018:1–8; https://doi.org/10.1007/978-3-319-54528-8_11-1.

Qu J, Zhao X, Liang Y, Zhang T, Ma PX, Guo B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials. 2018;183:185–99. https://doi.org/10.1016/j.biomaterials.2018.08.044.

Article  CAS 

留言 (0)

沒有登入
gif