In silico screening, synthesis, characterization and biological evaluation of novel anticancer agents as potential COX-2 inhibitors

Chandrasekharan NV, Simmons DL. The cyclooxygenases. Genome Biol. 2004;5: 241.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clària J. Cyclooxygenase-2 biology. Curr Pharm Des. 2003;9:2177–90.

Article  PubMed  Google Scholar 

Chow LWC, Loo WTY, Toi M. Current directions for COX-2 inhibition in breast cancer. Biomed Pharmacother. 2005;59(Suppl 2):281–4.

Article  Google Scholar 

Botting RM, Botting JH. The discovery of COX-2. In: Pairet M, van Ryn J, editors. COX-2 Inhibitors [Internet]. Basel: Birkhäuser; 2004 [cited 2023 Jan 3]. p. 1–13. Available from: https://doi.org/10.1007/978-3-0348-7879-1_1.

Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M. The role of Cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol. 2010;2010:e215158 (Hindawi).

Article  Google Scholar 

Müller-Decker K, Fürstenberger G. The cyclooxygenase-2-mediated prostaglandin signaling is causally related to epithelial carcinogenesis. Mol Carcinog. 2007;46:705–10.

Article  PubMed  Google Scholar 

Cervello M, Montalto G. Cyclooxygenases in hepatocellular carcinoma. World J Gastroenterol. 2006;12:5113–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Botting RM. Inhibitors of cyclooxygenases: mechanisms, selectivity and uses. J Physiol Pharmacol. 2006;57(Suppl 5):113–24.

PubMed  Google Scholar 

Sahu A, Raza K, Pradhan D, Jain AK, Verma S. Cyclooxygenase-2 as a therapeutic target against human breast cancer: a comprehensive review. WIREs Mech Dis. 2023;15(3):e1596. https://doi.org/10.1002/wsbm.1596.

Kizhakkeppurath Kumaran A, Sahu A, Singh A, Aynikkattil Ravindran N, Chatterjee NS, Mathew S, Verma S. Proteoglycans in breast cancer, identification and characterization by LC-MS/MS assisted proteomics approach: a review. Proteomics Clin Appl. 2023;e2200046. https://doi.org/10.1002/prca.202200046.

Yadav MK, Sahu A, Anu, Kasturria N, Priyadarshini A, Gupta A et al. Clinical Applications of Protein-Based Therapeutics. In: Singh DB, Tripathi T, editors. Protein-based Therapeutics [Internet]. Singapore: Springer Nature; 2023 [cited 2023 Mar 10]. p. 23–47. Available from: https://doi.org/10.1007/978-981-19-8249-1_2.

Sahu A, Verma S, Varma M, Yadav MK. Impact of ErbB receptors and anticancer drugs against breast cancer: a review. Curr Pharm Biotechnol. 2022;23(6):787–802. https://doi.org/10.2174/1389201022666210719161453.

Gong Z, Huang W, Wang B, Liang N, Long S, Li W, et al. Interplay between cyclooxygenase–2 and microRNAs in cancer (review). Mol Med Rep Spandidos Publications. 2021;23:1–10.

Google Scholar 

Howe LR. Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res. 2007;9:210.

Article  PubMed  PubMed Central  Google Scholar 

Ye Y, Wang X, Jeschke U. von Schönfeldt V. COX-2-PGE2-EPs in gynecological cancers. Arch Gynecol Obstet. 2020;301:1365–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saeedian Moghadam E, Hamel E, Shahsavari Z, Amini M. Synthesis and anti-breast cancer activity of novel indibulin related diarylpyrrole derivatives. DARU J Pharm Sci. 2019;27:179–89.

Article  CAS  Google Scholar 

Qureshi O, Dua A. COX Inhibitors. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Apr 23]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK549795/.

Kolawole OR, Kashfi K. NSAIDs and cancer resolution: new paradigms beyond cyclooxygenase. Int J Mol Sci. 2022;23:1432 (Multidisciplinary Digital Publishing Institute).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mosalpuria K, Hall C, Krishnamurthy S, Lodhi A, Hallman DM, Baraniuk MS, et al. Cyclooxygenase-2 expression in non-metastatic triple-negative breast cancer patients. Mol Clin Oncol. 2014;2:845–50.

Article  PubMed  PubMed Central  Google Scholar 

Tian J, Wang V, Wang N, Khadang B, Boudreault J, Bakdounes K, et al. Identification of MFGE8 and KLK5/7 as mediators of breast tumorigenesis and resistance to COX-2 inhibition. Breast Cancer Res. 2021;23:23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sahu A, Pradhan D, Raza K, Qazi S, Jain AK, Verma S. In silico library design, screening and MD simulation of COX-2 inhibitors for anticancer activity. In: 12th International Conference on Bioinformatics and Computational Biology. EPiC Series in Computing. EPiC Series in Computing. 2020;70:21–32.

Bajorath J. Computer-aided drug discovery. F1000Res [Internet]. 2015;4:1–8 [cited 2018 Oct 29]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756805/https://doi.org/10.12688/f1000research.6653.1.

Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3:935–49.

Article  CAS  PubMed  Google Scholar 

Jiang H, Zeng B, Chen G-L, Bot D, Eastmond S, Elsenussi SE, et al. Effect of non-steroidal anti-inflammatory drugs and new fenamate analogues on TRPC4 and TRPC5 channels. Biochem Pharmacol. 2012;83:923–31.

Article  CAS  PubMed  Google Scholar 

Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol. 2020;180: 114147.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathew B, Hobrath JV, Lu W, Li Y, Reynolds RC. Synthesis and preliminary assessment of the anticancer and Wnt/β-catenin inhibitory activity of small amide libraries of fenamates and profens. Med Chem Res. 2017;26:3038–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Mansmann UR. Modeling of non-steroidal anti-inflammatory drug effect within signaling pathways and miRNA-regulation pathways. PLOS ONE. 2013;8:e72477 (Public Library of Science).

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Sheikh A, Khired Z. Interactions of analgesics with cisplatin: modulation of anticancer efficacy and potential organ toxicity. Med (Kaunas). 2021;58:46.

Google Scholar 

Moris D, Kontos M, Spartalis E, Fentiman IS. The role of NSAIDs in breast cancer prevention and relapse: current evidence and future perspectives. Breast Care (Basel). 2016;11:339–44.

Article  PubMed  Google Scholar 

Kim H-J, Cho S-D, Kim J, Kim S-J, Choi C, Kim J-S, et al. Apoptotic effect of tolfenamic acid on MDA-MB-231 breast cancer cells and xenograft tumors. J Clin Biochem Nutr. 2013;53:21–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Razak NA, Abu N, Ho WY, Zamberi NR, Tan SW, Alitheen NB, et al. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Sci Rep Nat Publishing Group. 2019;9:1514.

Google Scholar 

Klose C, Straub I, Riehle M, Ranta F, Krautwurst D, Ullrich S, et al. Fenamates as TRP channel blockers: mefenamic acid selectively blocks TRPM3. Br J Pharmacol. 2011;162:1757–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Čeponytė U, Paškevičiūtė M, Petrikaitė V. Comparison of NSAIDs activity in COX-2 expressing and non-expressing 2D and 3D pancreatic cancer cell cultures. Cancer Manag Res. 2018;10:1543–51.

Article  PubMed  PubMed Central  Google Scholar 

Elmaaty AA, Darwish KM, Chrouda A, Boseila AA, Tantawy MA, Elhady SS, et al. In Silico and in vitro studies for benzimidazole anthelmintics repurposing as VEGFR-2 antagonists: novel mebendazole-loaded mixed micelles with enhanced dissolution and anticancer activity. ACS Omega. 2022;7:875–99.

Article  CAS  PubMed  Google Scholar 

Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26:283–91.

Article  CAS  Google Scholar 

Sterling T, Irwin JJ. ZINC 15 – ligand Discovery for everyone. J Chem Inf Model. 2015;55:2324–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayers M, ChemSpider. The free chemical database. Reference reviews. 2012;26(7):45–6.

Pence HE, Williams A. ChemSpider: an online chemical information resource. J Chem Educ. 2010;87:1123–4.

Article  CAS  Google Scholar 

Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J. BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 2016;44:D1045-1053.

Article  CAS  PubMed  Google Scholar 

Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221–34.

Article  PubMed  Google Scholar 

Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: a software program for pKaprediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des. 2007;21:681–91.

Article  CAS  PubMed  Google Scholar 

Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–49.

Article  CAS  PubMed  Google Scholar 

Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006;49:6177–96.

Article  CAS  PubMed  Google Scholar 

Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10:449–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Norinder U, Bergström CAS. Prediction of ADMET properties. ChemMedChem. 2006;1:920–37.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif