Development of metasurface based hyperthermia lens applicator for heating of cancerous tissues

Cabuy E. Electrochemical therapy in cancer treatment. Reliab Cancer Ther. 2012;6:1–20.

Google Scholar 

Kroesen M, Mulder HT, van Holthe JML, Aangeenbrug AA, Mens JWM, van Doorn HC, et al. Confirmation of thermal dose as a predictor of local control in cervical carcinoma patients treated with state-of-the-art radiation therapy and hyperthermia. Radiother Oncol. 2019;140:150–8. https://doi.org/10.1016/j.radonc.2019.06.021.

Article  Google Scholar 

Bakker A, van der Zee J, van Tienhoven G, Kok HP, Rasch CRN, Crezee H. Temperature and thermal dose during radiotherapy and hyperthermia for recurrent breast cancer are related to clinical outcome and thermal toxicity: a systematic review. Int J Hyperth. 2019;36:1024–39. https://doi.org/10.1080/02656736.2019.1665718.

Article  Google Scholar 

Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, et al. Heating technology for malignant tumors: a review. Int J Hyperth. 2020;37:711–41. https://doi.org/10.1080/02656736.2020.1779357.

Article  Google Scholar 

Tumors D. Radiofrequency capacitive hyperthermia for deep-seated tumors. Cancer. 1987;60:121–7. https://doi.org/10.1002/1097-0142(19870701)60:1%3c128::AID-CNCR2820600124%3e3.0.CO;2-V.

Article  Google Scholar 

Zhu L, Altman MB, Laszlo A, Straube W, Zoberi I, Hallahan DE, et al. Ultrasound hyperthermia technology for radiosensitization. Ultrasound Med Biol. 2019;45:1025–43. https://doi.org/10.1016/j.ultrasmedbio.2018.12.007.

Article  Google Scholar 

Singh S, Sahu B, Singh SP. Conformal microstrip slot antenna with an AMC reflector for hyperthermia. J Electromagn Waves Appl. 2016;30:1603–19. https://doi.org/10.1080/09205071.2016.1207568.

Article  Google Scholar 

van Vulpen M, Raaymakers BW, Lagendijk JJW, Crezee J, de Leeuw AAC, van Moorselaar JRA, et al. Three-dimensional controlled interstitial hyperthermia combined with radiotherapy for locally advanced prostate carcinoma—a feasibility study. Int J Radiat Oncol. 2002;53:116–26. https://doi.org/10.1016/S0360-3016(01)02828-0.

Article  Google Scholar 

Guy AW. Electromagnetic fields and relative heating patterns due to a rectangular aperture source in direct contact with bilayered biological tissue. IEEE Trans Microw Theory Tech. 1968;16:214–23. https://doi.org/10.1109/TMTT.1968.1127485.

Article  Google Scholar 

Singh S, Singh SP. Water-loaded metal diagonal horn applicator for hyperthermia. IET Microw Antennas Propag. 2015;9:814–21. https://doi.org/10.1049/iet-map.2014.0699.

Article  Google Scholar 

Tanabe E, McEuen AH, Caslow S, Norris CS, Samulski T V., Fessenden P. Microstrip spiral antenna for local hyperthermia. In: IEEE MTT-S international microwave symposium digest, pp. 133–134. https://doi.org/10.1109/mwsym.1984.1131715.

Yong-xing DU. The design and simulation of two-armed spiral antenna for microwave hyperthermia 2011, pp. 3–6.

Koo YS, Kazemi R, Liu Q, Phillips JC, Fathy AE. Development of a high SAR conformal antenna for hyperthermia tumors treatment. IEEE Trans Antennas Propag. 2014;62:5830–40. https://doi.org/10.1109/TAP.2014.2357419.

Article  MathSciNet  MATH  Google Scholar 

Korkmaz E, Isik O, Nassor MA. A compact microstrip spiral antenna embedded in water bolus for hyperthermia applications. Int J Antennas Propag. 2013. https://doi.org/10.1155/2013/954986.

Article  Google Scholar 

Curto S, McEvoy P, Bao X, Ammann MJ. Compact patch antenna for electromagnetic interaction with human tissue at 434 MHz. IEEE Trans Antennas Propag. 2009;57:2564–71. https://doi.org/10.1109/TAP.2009.2027040.

Article  Google Scholar 

Montecchia F. Microstrip-antenna design for hyperthermia treatment of superficial tumors. IEEE Trans Biomed Eng. 1992;39:580–8. https://doi.org/10.1109/10.141196.

Article  Google Scholar 

Choi WC, Lim S, Yoon YJ. Evaluation of transmit-array lens antenna for deep-seated hyperthermia tumor treatment. IEEE Antennas Wirel Propag Lett. 2020;19:866–70. https://doi.org/10.1109/LAWP.2020.2982676.

Article  Google Scholar 

Tao Y, Wang G. Conformal hyperthermia of superficial tumor with left-handed metamaterial lens applicator. IEEE Trans Biomed Eng. 2012;59:3525–30. https://doi.org/10.1109/TBME.2012.2218108.

Article  Google Scholar 

Velázquez-Ahumada MC, Freire MJ, Marqués R. Metamaterial focusing device for microwave hyperthermia. Microw Opt Technol Lett. 2011;53:2868–72. https://doi.org/10.1002/mop.26434.

Article  Google Scholar 

Jaffar NA, Lias K, Madzhi NK, Buniyamin N. Improving the performance of applicators for use in hyperthermia cancer treatment procedure by the introduction of LHM lens. Int J Electr Electron Syst Res. 2019;14:24–9.

Google Scholar 

Gong Y, Wang G. Superficial tumor hyperthermia with flat left-handed metamaterial lens. Prog Electromagn Res. 2009;98:389–405. https://doi.org/10.2528/PIER09091401.

Article  Google Scholar 

Available from: http://www.cst.com (n.d.).

Sharma N, Singh HS, Khanna R, Kaur A, Agarwal M. Development of deeply focused microwave lens applicator for efficient hyperthermia treatment. Optik. 2022;259:168946. https://doi.org/10.1016/j.ijleo.2022.168946.

Article  Google Scholar 

Tao Y, Wang G. Influence of source offset on breast tumor hyperthermia with Γ-shaped LHM lens applicator. In: 2010 International conference on microwave and millimeter wave technology ICMMT 2010, pp. 1859–61. https://doi.org/10.1109/ICMMT.2010.5524876.

Wu T, Consulting A, Cost L. Frequency selective surfaces. New York: Inc New York; 2016.

Google Scholar 

Razi ZM, Rezaei P, Valizade A. A novel design of Fabry- Perot antenna using metamaterial superstrate for gain and bandwidth enhancement international. AEUE Int J Electron Commun. 2015;69:1525–32. https://doi.org/10.1016/j.aeue.2015.05.012.

Article  Google Scholar 

Foroozesh A, Shafai L. Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design. IEEE Trans Antennas Propag. 2010;58:258–70. https://doi.org/10.1109/TAP.2009.2037702.

Article  Google Scholar 

Holloway CL, Dienstfrey A, Kuester EF, Hara JFO, Azad AK, Taylor AJ. A discussion on the interpretation and characterization of metafilms/metasurfaces: the two-dimensional equivalent of metamaterials. Metamaterials. 2009;3:100–12. https://doi.org/10.1016/j.metmat.2009.08.001.

Article  Google Scholar 

Holloway CL, Kuester EF, Gordon JA, Hara JO, Booth J, Smith DR. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag Mag. 2012;54:10–35.

Article  Google Scholar 

Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett. 2013;110:197401. https://doi.org/10.1103/PhysRevLett.110.197401.

Article  Google Scholar 

Feresidis AP, Vardaxoglou JC. High gain planar antenna using optimised partially reflective surfaces. IEEE Proc Microw Antennas Propag. 2001;148:345–50.

Article  Google Scholar 

Available from https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties.

Neuman DG, Stauffer PR, Jacobsen S, Rossetto F. SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators. Int J Hyperth. 2002;18:180–93. https://doi.org/10.1080/02656730110119198.

Article  Google Scholar 

Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;85:5–34. https://doi.org/10.1152/jappl.1998.85.1.5.

Article  Google Scholar 

Karacolak T, Hood AZ, Topsakal E. Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Trans Microw Theory Tech. 2008;56:1001–8.

Article  Google Scholar 

Sani A, Rajab M, Foster R, Hao Y. Antennas and propagation of implanted RFIDs for pervasive healthcare applications. Proc IEEE. 2010;98:1648–55. https://doi.org/10.1109/JPROC.2010.2051010.

Article  Google Scholar 

留言 (0)

沒有登入
gif