A neuroprotective dose of trehalose is harmless to metabolic organs: comprehensive histopathological analysis of liver, pancreas, and kidney

Richards AB, Krakowka S, Dexter LB, et al. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol. 2002. https://doi.org/10.1016/s0278-6915(02)00011-x.

Article  PubMed  Google Scholar 

Argüelles JC. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol. 2000. https://doi.org/10.1007/s002030000192.

Article  PubMed  Google Scholar 

Benaroudj N, Lee DH, Goldberg AL, et al. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem. 2001. https://doi.org/10.1074/jbc.M101487200.

Article  PubMed  Google Scholar 

Luyckx J, Baudouin C. Trehalose: an intriguing disaccharide with potential for medical application in ophthalmology. Clin Ophthalmol. 2011. https://doi.org/10.2147/OPTH.S18827.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, DeBosch BJ. Using trehalose to prevent and treat metabolic function: effectiveness and mechanisms. Curr Opin Clin Nutr Metab Care. 2019. https://doi.org/10.2147/OPTH.S18827.

Article  PubMed  PubMed Central  Google Scholar 

Jeong SJ, Stitham J, Evans TD, et al. Trehalose causes low-grade lysosomal stress to activate TFEB and the autophagy-lysosome biogenesis response. Autophagy 2021;17:3740-3752 https://doi.org/10.1080/15548627.2021.1896906.

Stachowicz A, Wiśniewska A, Kuś K, et al. The Influence of Trehalose on Atherosclerosis and Hepatic Steatosis in Apolipoprotein E Knockout Mice. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20071552.

Article  PubMed  PubMed Central  Google Scholar 

DeBosch BJ, Heitmeier MR, Mayer AL, et al. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci Signal. 2016. https://doi.org/10.1126/scisignal.aac5472.

Article  PubMed  PubMed Central  Google Scholar 

Rusmini P, Cortese K, Crippa V, et al. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy. 2019;15:631-651 https://doi.org/10.1080/15548627.2018.1535292.

Mizunoe Y, Kobayashi M, Sudo Y, et al. Trehalose protects against oxidative stress by regulating the Keap1-Nrf2 and autophagy pathways. Redox Biol. 2018. https://doi.org/10.1016/j.redox.2017.09.007.

Article  PubMed  Google Scholar 

Sergin I, Evans TD, Zhang X, et al. Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nat Commun. 2017. https://doi.org/10.1038/ncomms15750.

Article  PubMed  PubMed Central  Google Scholar 

Sciarretta S, Yee D, Nagarajan N, et al. Trehalose-Induced Activation of Autophagy Improves Cardiac Remodeling After Myocardial Infarction. J Am Coll Cardiol. 2018. https://doi.org/10.1016/j.jacc.2018.02.066.

Article  PubMed  PubMed Central  Google Scholar 

Taneike M, Nishida K, Omiya S, et al. mTOR Hyperactivation by Ablation of Tuberous Sclerosis Complex 2 in the Mouse Heart Induces Cardiac Dysfunction with the Increased Number of Small Mitochondria Mediated through the Down-Regulation of Autophagy. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0152628.

Article  PubMed  PubMed Central  Google Scholar 

Ando N, Shingu Y, Suno K, et al. Trehalose preconditioning for transient global myocardial ischemia in rats. Biochem Biophys Res Commun. 2021. https://doi.org/10.1016/j.bbrc.2021.02.032.

Article  PubMed  Google Scholar 

Liu Y, Wu S, Zhao Q, et al. Trehalose Ameliorates Diabetic Cardiomyopathy: Role of the PK2/PKR Pathway. Oxid Med Cell Longev. 2021. https://doi.org/10.1155/2021/6779559.

Article  PubMed  PubMed Central  Google Scholar 

Korolenko TA, Dubrovina NI, Ovsyukova MV, et al. Treatment with Autophagy Inducer Trehalose Alleviates Memory and Behavioral Impairments and Neuroinflammatory Brain Processes in db/db Mice. Cells. 2021. https://doi.org/10.3390/cells10102557.

Article  PubMed  PubMed Central  Google Scholar 

Liu R, Barkhordarian H, Emadi S, et al. Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiol Dis. 2005. https://doi.org/10.1016/j.nbd.2005.02.003.

Article  PubMed  Google Scholar 

Krüger U, Wang Y, Kumar S, Mandelkow EM. Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging. 2012. https://doi.org/10.1016/j.neurobiolaging.2011.11.009.

Article  PubMed  Google Scholar 

Casarejos MJ, Solano RM, Gómez A, et al. The accumulation of neurotoxic proteins, induced by proteasome inhibition, is reverted by trehalose, an enhancer of autophagy, in human neuroblastoma cells. Neurochem Int. 2011. https://doi.org/10.1016/j.neuint.2011.01.008.

Article  PubMed  Google Scholar 

He Q, Koprich JB, Wang Y, et al. Treatment with Trehalose Prevents Behavioral and Neurochemical Deficits Produced in an AAV α-Synuclein Rat Model of Parkinson’s Disease. Mol Neurobiol. 2016. https://doi.org/10.1007/s12035-015-9173-7.

Article  PubMed  PubMed Central  Google Scholar 

Sarkar S, Chigurupati S, Raymick J, et al. Neuroprotective effect of the chemical chaperone, trehalose in a chronic MPTP-induced Parkinson’s disease mouse model. Neurotoxicology. 2014. https://doi.org/10.1016/j.neuro.2014.07.006.

Article  PubMed  Google Scholar 

Du J, Liang Y, Xu F, et al. Trehalose rescues Alzheimer’s disease phenotypes in APP/PS1 transgenic mice. J Pharm Pharmacol. 2013. https://doi.org/10.1111/jphp.12108.

Article  PubMed  Google Scholar 

Perucho J, Casarejos MJ, Gomez A, et al. Trehalose Protects from Aggravation of Amyloid Pathology Induced by Isoflurane Anesthesia in APPswe Mutant Mice. Curr Alzheimer Res. 2012. https://doi.org/10.2174/156720512800107573.

Article  PubMed  Google Scholar 

Zhang X, Chen S, Song L, et al. MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy. 2014. https://doi.org/10.4161/auto.27710.

Article  PubMed  PubMed Central  Google Scholar 

Castillo K, Nassif M, Valenzuela V, et al. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy. 2013. https://doi.org/10.4161/auto.25188.

Article  PubMed  Google Scholar 

Tanaka M, Machida Y, Niu S, et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington’s disease. Nat Med. 2004. https://doi.org/10.1038/nm985.

Article  PubMed  Google Scholar 

Debnath K, Pradhan N, Singh BK, et al. Poly(trehalose) Nanoparticles Prevent Amyloid Aggregation and Suppress Polyglutamine Aggregation in a Huntington’s Disease Model Mouse. ACS Appl Mater Interfaces. 2017. https://doi.org/10.1021/acsami.7b06510.

Article  PubMed  Google Scholar 

Rodríguez-Navarro JA, Rodríguez L, Casarejos MJ, et al. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis. 2010. https://doi.org/10.1016/j.nbd.2010.05.014.

Article  PubMed  Google Scholar 

Pupyshev AB, Klyushnik TP, Akopyan AA, et al. Disaccharide trehalose in experimental therapies for neurodegenerative disorders: Molecular targets and translational potential. Pharmacol Res. 2022. https://doi.org/10.1016/j.phrs.2022.106373.

Article  PubMed  Google Scholar 

Khalifeh M, Barreto GE, Sahebkar A. Trehalose as a promising therapeutic candidate for the treatment of Parkinson’s disease. Br J Pharmacol. 2019. https://doi.org/10.1111/bph.14623.

Article  PubMed  PubMed Central  Google Scholar 

Khalifeh M, Read MI, Barreto GE, et al. Trehalose against Alzheimer’s Disease: Insights into a Potential Therapy. Bioessays. 2020;42:1900195. https://doi.org/10.1002/bies.201900195.

Article  CAS  Google Scholar 

Oku T, Okazaki M. Transitory laxative threshold of trehalose and lactulose in healthy women. J Nutr Sci Vitaminol. 1998. https://doi.org/10.3177/jnsv.44.787.

Article  PubMed  Google Scholar 

Varesi A, Campagnoli LIM, Fahmideh F, et al. The interplay between gut microbiota and Parkinson’s disease: implications on diagnosis and treatment. Int J Mol Sci. 2022;23:12289. https://doi.org/10.3390/ijms232012289.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warnecke T, Schäfer KH, Claus I, et al. Gastrointestinal involvement in Parkinson’s disease: pathophysiology, diagnosis, and management. NPJ Parkinsons Dis. 2022. https://doi.org/10.1038/s41531-022-00295-x.

Article  PubMed  PubMed Central  Google Scholar 

da Silva TA, Lemes RM, Oliveira CJ, et al. Data on morphometric analysis of the pancreatic islets from C57BL/6 and BALB/c mice. Data Brief. 2016. https://doi.org/10.1016/j.dib.2016.07.030.

Article  PubMed  PubMed Central  Google Scholar 

Ilić S, Stojiljković N, Sokolović D, et al. Morphometric analysis of structural renal alterations and beneficial effects of aminoguanidine in acute kidney injury induced by cisplatin in rats. Can J Physiol Pharmacol. 2020. https://doi.org/10.1139/cjpp-2019-0252.

Article  PubMed  Google Scholar 

Rezigalla AA. Morphometry: Assessing Direct and Indirect Methods of Measuring the Diameters of Tubular Structures. Int J Morphol. 2022. https://doi.org/10.4067/S0717-95022022000200314.

Article  Google Scholar 

Verhaegen AA, Van Gaal LF. Drugs Affecting Body Weight, Body Fat Distribution, and Metabolic Function—Mechanisms and Possible Therapeutic or Preventive Measures: an Update. Curr Obes Rep. 2021. https://doi.org/10.1007/s13679-020-00419-5.

Article  PubMed  Google Scholar 

Han HS, Kang G, Kim JS, et al. Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med. 2016. https://doi.org/10.1038/emm.2015.122.

Article  PubMed  PubMed Central  Google Scholar 

Abe Y, Hines IN, Zibari G, et al. Mouse model of liver ischemia and reperfusion injury: method for studying reactive oxygen and nitrogen metabolites in vivo. Free Radic Biol Med. 2009. https://doi.org/10.1016/j.freeradbiomed.2008.09.029.

Article  PubMed 

留言 (0)

沒有登入
gif