Akiyama T, Suzuki O, Matsuda J, Aoki F (2011) Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLOS Genet 7:e1002279. https://doi.org/10.1371/journal.pgen.1002279
Article CAS PubMed PubMed Central Google Scholar
Anuar ND, Kurscheid S, Field M et al (2019) Gene editing of the multi-copy H2A.B gene and its importance for fertility. Genome Biol 20:23. https://doi.org/10.1186/s13059-019-1633-3
Article PubMed PubMed Central Google Scholar
Aoki F, Worrad DM, Schultz RM (1997) Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181:296–307. https://doi.org/10.1006/dbio.1996.8466
Article CAS PubMed Google Scholar
Arents G, Burlingame RW, Wang BC et al (1991) The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci 88:10148–10152. https://doi.org/10.1073/pnas.88.22.10148
Article CAS PubMed PubMed Central Google Scholar
Arimura Y, Kimura H, Oda T et al (2013) Structural basis of a nucleosome containing histone H2A.B/H2A.Bbd that transiently associates with reorganized chromatin. Sci Rep 3:3510. https://doi.org/10.1038/srep03510
Article PubMed PubMed Central Google Scholar
Aul RB, Oko RJ (2001) The major subacrosomal occupant of bull spermatozoa is a novel histone H2B variant associated with the forming acrosome during spermiogenesis. Dev Biol 239:376–387. https://doi.org/10.1006/dbio.2001.0427
Article CAS PubMed Google Scholar
Baarends WM, Hoogerbrugge JW, Roest HP et al (1999) Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev Biol 207:322–333. https://doi.org/10.1006/dbio.1998.9155
Article CAS PubMed Google Scholar
Bao Y, Konesky K, Park YJ et al (2004) Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J 23:3314–3324. https://doi.org/10.1038/sj.emboj.7600316
Article CAS PubMed PubMed Central Google Scholar
Barral S, Morozumi Y, Tanaka H et al (2017) Histone variant H2A.L.2 guides transition protein-dependent protamine assembly in male germ cells. Mol Cell 66:89-101.e8. https://doi.org/10.1016/j.molcel.2017.02.025
Article CAS PubMed Google Scholar
Bošković A, Eid A, Pontabry J et al (2014) Higher chromatin mobility supports totipotency and precedes pluripotency in vivo. Genes Dev 28:1042–1047. https://doi.org/10.1101/gad.238881.114
Article CAS PubMed PubMed Central Google Scholar
Boulard M, Gautier T, Mbele GO et al (2006) The NH2 Tail of the novel histone variant H2BFWT exhibits properties distinct from conventional H2B with respect to the assembly of mitotic chromosomes. Mol Cell Biol 26:1518–1526. https://doi.org/10.1128/MCB.26.4.1518-1526.2006
Article CAS PubMed PubMed Central Google Scholar
Bramlage B, Kosciessa U, Doenecke D (1997) Differential expression of the murine histone genes H3.3A and H3.3B. Differ Res Biol Divers 62:13–20. https://doi.org/10.1046/j.1432-0436.1997.6210013.x
Brock WA, Trostle PK, Meistrich ML (1980) Meiotic synthesis of testis histones in the rat. Proc Natl Acad Sci U S A 77:371–375
Article CAS PubMed PubMed Central Google Scholar
Brunner AM, Nanni P, Mansuy IM (2014) Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics Chromatin 7:1–12. https://doi.org/10.1186/1756-8935-7-2
Bucci L, Brock W, Meistrich M (1982) Distribution and synthesis of histone 1 subfractions during spermatogenesis in the rat. Exp Cell Res 140:111–118. https://doi.org/10.1016/0014-4827(82)90162-8
Article CAS PubMed Google Scholar
Burton A, Brochard V, Galan C et al (2020) Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3. Nat Cell Biol 22:767–778. https://doi.org/10.1038/s41556-020-0536-6
Article CAS PubMed PubMed Central Google Scholar
Buschbeck M, Hake SB (2017) Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell Biol 18:299–314. https://doi.org/10.1038/nrm.2016.166
Article CAS PubMed Google Scholar
Carone BR, Hung J-H, Hainer SJ et al (2014) High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Dev Cell 30:11–22. https://doi.org/10.1016/j.devcel.2014.05.024
Article CAS PubMed PubMed Central Google Scholar
Celeste A, Petersen S, Romanienko PJ et al (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927. https://doi.org/10.1126/science.1069398
Article CAS PubMed PubMed Central Google Scholar
Chen HY, Sun J-M, Zhang Y et al (1998) Ubiquitination of histone H3 in elongating spermatids of rat testes *. J Biol Chem 273:13165–13169. https://doi.org/10.1074/jbc.273.21.13165
Article CAS PubMed Google Scholar
Chen Z, Djekidel MN, Zhang Y (2021) Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos. Nat Genet 53:551–563. https://doi.org/10.1038/s41588-021-00821-2
Article CAS PubMed PubMed Central Google Scholar
Chew GL, Bleakley M, Bradley RK et al (2021) Short H2A histone variants are expressed in cancer. Nat Commun 12:490. https://doi.org/10.1038/s41467-020-20707-x
Article CAS PubMed PubMed Central Google Scholar
Chmátal L, Gabriel SI, Mitsainas GP et al (2014) Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr Biol CB 24:2295–2300. https://doi.org/10.1016/j.cub.2014.08.017
Article CAS PubMed Google Scholar
Churikov D, Siino J, Svetlova M et al (2004) Novel human testis-specific histone H2B encoded by the interrupted gene on the X chromosome. Genomics 84:745–756. https://doi.org/10.1016/j.ygeno.2004.06.001
Article CAS PubMed Google Scholar
Couldrey C, Carlton MB, Nolan PM et al (1999) A retroviral gene trap insertion into the histone 3.3A gene causes partial neonatal lethality, stunted growth, neuromuscular deficits and male sub-fertility in transgenic mice. Hum Mol Genet 8:2489–2495. https://doi.org/10.1093/hmg/8.13.2489
Article CAS PubMed Google Scholar
Crespi B, Semeniuk C (2004) Parent-offspring conflict in the evolution of vertebrate reproductive mode. Am Nat 163:635–653. https://doi.org/10.1086/382734
Dahl JA, Jung I, Aanes H et al (2016) Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537:548–552. https://doi.org/10.1038/nature19360
Article CAS PubMed PubMed Central Google Scholar
Das A, Smoak EM, Linares-Saldana R et al (2017) Centromere inheritance through the germline. Chromosoma 126:595–604. https://doi.org/10.1007/s00412-017-0640-y
Article CAS PubMed PubMed Central Google Scholar
Ding D, Nguyen TT, Pang MYH, Ishibashi T (2021) Primate-specific histone variants. Genome 64:337–346. https://doi.org/10.1139/gen-2020-0094
Article CAS PubMed Google Scholar
Doyen CM, Montel F, Gautier T et al (2006) Dissection of the unusual structural and functional properties of the variant H2A.Bbd nucleosome. EMBO J 25:4234–4244. https://doi.org/10.1038/sj.emboj.7601310
Article CAS PubMed PubMed Central Google Scholar
Drabent B, Bode C, Bramlage B, Doenecke D (1996) Expression of the mouse testicular histone gene H1t during spermatogenesis. Histochem Cell Biol 106:247–251. https://doi.org/10.1007/BF02484408
Article CAS PubMed Google Scholar
Drabent B, Bode C, Miosge N et al (1998) Expression of the mouse histone gene H1t begins at premeiotic stages of spermatogenesis. Cell Tissue Res 291:127–132. https://doi.org/10.1007/s004410050986
Article CAS PubMed Google Scholar
Draizen EJ, Shaytan AK, Mariño-Ramírez L et al (2016) HistoneDB 2.0: a histone database with variants—an integrated resource to explore histones and their variants. Database 2016:baw014. https://doi.org/10.1093/database/baw014
Article CAS PubMed PubMed Central Google Scholar
Eirín-López JM, González-Tizón AM, Martínez A, Méndez J (2004) Birth-and-death evolution with strong purifying selection in the histone H1 multigene family and the origin of orphon H1 genes. Mol Biol Evol 21:1992–2003. https://doi.org/10.1093/molbev/msh213
Article CAS PubMed Google Scholar
Erkek S, Hisano M, Liang CY et al (2013) Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol 20:868–875. https://doi.org/10.1038/nsmb.2599
Comments (0)