Increased genome size is caused by heterochromatin addition in two non-related bat species, Hesperoptenus doriae and Philetor brachypterus (Vespertilionidae, Chiroptera, Mammalia)

Aniskin VM, Benazzou T, Biltueva L, Dobigny G, Granjon L, Volobouev V (2006) Unusually extensive karyotype reorganization in four congeneric Gerbillus species (Muridae: Gerbillinae). Cytogenet Genome Res 112:131–140

Article  CAS  PubMed  Google Scholar 

Ao L, Gu X, Feng Q, Wang J, O´Brien PCM, Fu B, Mao X, Su W, Wang Y, Volleth M, Yang F, Nie W (2006) Karyotype relationships of six bat species (Chiroptera, Vespertilionidae) from China revealed by chromosome painting and G-banding comparison. Cytogenet Genome Res 115:145–153

Article  CAS  PubMed  Google Scholar 

Araújo REF, Nagamachi CY, Costa MJR, Noronha RCR, Rodrigues LRR, Pieczarka JC (2016) First description of multivalent ring structures in eutherian mammalian meiosis: new chromosomal characterization of Cormura brevirostris (Emballonuridae, Chiroptera). Genetica 144:407–415

Article  PubMed  Google Scholar 

Bachmann K (1972) Genome size in mammals. Chromosoma 37:85–93

Article  CAS  PubMed  Google Scholar 

Bickham JW (1987) Chromosomal variation among seven species of Lasiurine bats (Chiroptera: Vespertilionidae). J Mamm 68:837–842

Article  Google Scholar 

Burckhardt G, Votavova H, Jantsch M, Zimmer C, Lown JW, Schweizer D (1993) Mechanisms of distamycin A/DAPI chromosome staining. I. Competition binding effects of nonintercalative DNA groove-binding agents in situ and in vitro. Cytogenet Cell Genet 62:19–25

Article  CAS  PubMed  Google Scholar 

Burton DW, Bickham JW, Genoways HH (1989) Flow-cytometric analyses of nuclear DNA content in four families of neotropical bats. Evolution 43:756–765

PubMed  Google Scholar 

Camargo M, Cervenka J (1980) Pattern of chromosomal replication in synchronized lymphocytes. I. Evaluation and application of methotrexate block. Hum Genet 54:47–53

Article  CAS  PubMed  Google Scholar 

Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 34:247–278

Article  CAS  PubMed  Google Scholar 

Deaven LL, Vidal-Rioja L, Jett JH, Hsu TC (1977) Chromosomes of Peromyscus (Rodentia, Cricetidae). VI. The Genome Size. Cytogenet Cell Genet 19:241–249

Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51A:127–128

Google Scholar 

Duarte do Rego Barros HM, Sotero-Caio CG, Santos N, Souza MJ (2009) Comparative cytogenetic analysis between Lonchorhina aurita and Trachops cirrhosus (Chiroptera, Phyllostomidae). Gen Mol Biol 32:748–752

Article  Google Scholar 

Fioriniello S, Marano D, Fiorillo F, D’Esposito M, Della Ragione F (2020) Epigenetic factors that control pericentric heterochromatin organization in mammals. Genes 11:595. https://doi.org/10.3390/genes11060595

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gamperl R, Ehmann C, Bachmann K (1982) Genome size and heterochromatin variation in rodents. Genetica 58:199–212

Article  CAS  Google Scholar 

Görföl T, Kruskop SV, Tu VT, Estok P, Son NT, Gsorba G (2020) A new genus of vespertilionid bat: the end of a long journey for Joffre’s pipistrelle (Chiroptera: Vespertilionidae). J Mammal 101:331–348

Article  PubMed  PubMed Central  Google Scholar 

Graphodatsky AS, Trifonov VA, Stanyon R (2011) The genome diversity and karyotype evolution of mammals. Mol Cytogen 4:22

Article  Google Scholar 

Gregory TR (2002) A bird´s eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class aves. Evolution 56:121–130

CAS  PubMed  Google Scholar 

Gregory TR (2005) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Botany 95:133–146

Article  CAS  Google Scholar 

Gregory TR (2022) Animal genome size database. See http://www.genomesize.com

Greilhuber J (2009) Cytochemistry and C-values: the less-well-known world of nuclear DNA amounts. Ann Bot 101:791–804

Article  Google Scholar 

Greilhuber J, Volleth M, Loidl J (1983) Genome size of man and animals relative to the plant Allium cepa. Can J Genet Cytol 25:554–560

Article  CAS  PubMed  Google Scholar 

Greilhuber J, Dolezel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms “genome size” and “C-value” to describe nuclear DNA contents. Ann Bot 95:255–260

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harada M, Uchida TA, Yoshida TH, Takada S (1982) Karyological studies of two Japanese noctule bats (Chiroptera). Caryologia 35:1–9

Article  Google Scholar 

Hardie DC, Gregory TR, Hebert PDN (2002) From pixels to picograms: a beginners’ guide to genome quantification by Feulgen image analysis densiometry. J Hist Cytochem 50:735–749

Article  CAS  Google Scholar 

Hassanin A, Colombo R, Gembu G-C, Merle M, Tu VT, Görföl T, Akawa PM, Csorba G, Kearney T, Monadjem A, Ing RK (2017) Multilocus phylogeny and species delimitation within the genus Glauconycteris (Chiroptera, Vespertilionidae), with the description of a new bat species from Tshopo province of the Democratic Republic of the Congo. J Zool Syst Evol Res 1–22https://doi.org/10.1111/jzs.12176

Heitz E (1928) Das Heterochromatin der Moose. I Jahrb Wiss Bot 69:762–818

Google Scholar 

Heller K-G, Volleth M, Kock D (1994) Notes on some vespertilionid bats from the Kivu region, Central Africa (Mammalia: Chiroptera). Senckenberg Biol 74:1–8

Google Scholar 

Hood CS, Baker RJ (1986) G- and C-banding chromosomal studies of bats of the family Emballonuridae. J Mamm 67:705–711

Article  Google Scholar 

Janssen A, Colmenares SU, Karpen GH (2018) Heterochromatin: guardian of the genome. Annu Rev Cell Dev Biol 34(8.1–8):24. https://doi.org/10.1146/annurev-cellbio-100617-062653

Article  CAS  Google Scholar 

John B, Miklos GLG (1988) The eukaryote genome in development and evolution. Allen and Unwin, London, Boston, Sydney, Wellington, XVIII + p 416

Kapusta A, Suh A, Feschotte C (2017) Dynamics of genome size evolution in birds and mammals. PNAS E1460-E146. https://doi.org/10.1073/pnas1616702114

Kasai F, O´Brien PCM, Ferguson-Smith MA (2013) The bat genome: GC-biased small chromosomes associated with reduction in genome size. Chromosoma 122:535–540

Article  PubMed  Google Scholar 

Kato H, Harada M, Tsuchiya K, Moriwaki K (1980) Absence of correlation between DNA repair in ultraviolet irradiated mammalian cells and life span of the donor species. Jpn J Genetics 55:99–108

Article  Google Scholar 

Leite-Silva C, Santos N, Fagundes V, Yonenaga-Yassuda Y, Souza MJ (2003) Karyotypic characterization of the bat species Molossus ater, M. molossus and Molossops planirostris (Chiroptera, Molossidae) using FISH and banding techniques. Hereditas 138:94–100

Article  PubMed  Google Scholar 

McBee K, Bickham JW, Yenbutra S, Nabhitabhata J, Schlitter DA (1986) Standard karyology of nine species of vespertilionid bats (Chiroptera: Vespertilionidae) from Thailand. Ann Carnegie Mus Nat Hist 55:95–116

Article  Google Scholar 

Müller S, O´Brien PCM, Ferguson-Smith MA, Wienberg J (1997) Reciprocal chromosome painting between human and prosimians (Eulemur macaco macaco and E. fulvus mayottensis). Cytogenet Cell Genet 78:260–271

Article  PubMed  Google Scholar 

Müller S, Stanyon R, O´Brien PCM, Ferguson-Smith MA, Plesker R, Wienberg J (1999) Defining the ancestral karyotype of all primates by multidirectional painting between tree shrews, lemurs and humans. Chromosoma 108:393–400

Article  PubMed  Google Scholar 

Murphy WJ, Eizirik E, O’ Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer M (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351

Article  CAS  PubMed  Google Scholar 

Naidu KN (1985) Studies on the cytology of bats. Ph. D. Thesis, University of Mysore, India

Naidu KN, Gururaj ME (1985) Karyotypic architecture of the False Vampire Bat Megaderma lyra. Cytologia 50:913–919

Article  Google Scholar 

Obara Y, Tomiyasu T, Saitoh K (1976) Chromosome studies in the Japanese vespertilionid bats: III. Preliminary observation of C-bands in the chromosomes of Pipistrellus abramus Temminck. Sci Rep Hirosaki Univ 23:39–42

Google Scholar 

Pardue ML, Hennig W (1990) Heterochromatin: junk or collectors item? Chromosoma 100:3–7

Article  CAS  PubMed  Google Scholar 

Patton JL, Sherwood SW (1982) Genome evolution in pocket gophers (genus Thomomys). I. heterochromatin variation and speciation potential. Chromosoma 85:149–162

Article  CAS  PubMed  Google Scholar 

Pellicciari C, Formenti D, Zuccotti M, Stanyon R, Manfredi Romanini MG (1988) Genome size and constitutive heterochromatin in Hylobates muelleri and Symphalangus syndactylus and in their viable hybrid. Cytogenet Cell Genet 47:1–4

Article  CAS  PubMed  Google Scholar 

Piovesan A, Pelleri MC, Antonaros F, Strippoli P, Caracausi M (2019) On the length, weight and GC content of the human genome. BMC Res Notes 12:106. https://doi.org/10.1186/s13104-019-4137-z

Article  PubMed  PubMed Central  Google Scholar 

Porter CA, Primus AW, Hoffmann FG, Baker RJ (2010) Karyology of five species of bats (Vespertilionidae, Hipposideridae and Nycteridae) from Gabon with comments on the taxonomy of Glauconycteris. Occ Pap Mus Tex Tech Univ 295:1–7

Google Scholar 

Rautenbach IL, Bronner GN, Schlitter DA (1993) Karyotypic data and attendant systematic implications for the bats of southern Africa. Koedoe 36:87–104

Article  Google Scholar 

Redi CA, Capanna E (2012) Genome size evolution: sizing mammalian genomes. Cytogenet Genome Res 137:97–112. https://doi.org/10.1159/000338820

Article  PubMed  Google Scholar 

Romanenko SA, Volobouev V (2012) Non-sciuromorph rodent karypotypes in evolution. Cytogenet Genome Res 137:233–245

Article 

留言 (0)

沒有登入
gif