Sensitivity to Pulse Rate and Amplitude Modulation in an Animal Model of the Auditory Brainstem Implant (ABI)

Colletti V, Shannon RV (2005) Open set speech perception with auditory brainstem implant? Laryngoscope 115(11):1974–1978. https://doi.org/10.1097/01.mlg.0000178327.42926.ec

Article  PubMed  Google Scholar 

Dhanasingh A, Hochmair I (2021) ABI-auditory brainstem implant. Acta Otolaryngol 141(S1):63–81. https://doi.org/10.1080/00016489.2021.1888486

Article  PubMed  Google Scholar 

Ramsden RT, Freeman SRM, Lloyd SKW, King AT, Shi X, Ward CL, Huson SM, Mawman DJ, O’Driscoll MP, Evans DG, Rutherford SA (2016) Auditory brainstem implantation in neurofibromatosis type 2: experience from the manchester programme. Otol Neurotol 37(9):1267–1274. https://doi.org/10.1097/MAO.0000000000001166

Article  PubMed  Google Scholar 

Vincent C (2012) Auditory brainstem implants: how do they work? Anat Rec (Hoboken) 295(11):1981–1986. https://doi.org/10.1002/ar.22588

Article  CAS  PubMed  Google Scholar 

Wong K, Kozin ED, Kanumuri VV, Vachicouras N, Miller J, Lacour S, Brown MC, Lee DJ (2019) Auditory brainstem implants: recent progress and future perspectives. Front Neurosci 13(January):1–8. https://doi.org/10.3389/fnins.2019.00010

Article  Google Scholar 

Barber SR, Kozin ED, Remenschneider AK, Puram SV, Smith M, Herrmann BS, Cunnane ME, Brown MC, Lee DJ (2017) Auditory brainstem implant array position varies widely among adult and pediatric patients and is associated with perception. Ear Hear 38(6):343–351. https://doi.org/10.1097/AUD.0000000000000448

Article  Google Scholar 

Egra-Dagan D, van Beurden V, Barber SR, Carter CL, Cunnane ME, Brown MC, Herrmann BS, Lee DJ (2021) Adult auditory brainstem implant outcomes and three-dimensional electrode array position on computed tomography. Ear Hear 42(6):1741–1754

Guex AA, Hight AE, Narasimhan S, Vachicouras N, Lee DJ, Lacour SP, Brown MC (2019) Auditory brainstem stimulation with a conformable microfabricated array elicits responses with tonotopically organized components. Hear Res 377:339–352. https://doi.org/10.1016/j.heares.2019.02.010

Mauger SJ, Shivdasani MN, Rathbone GD, Argent RE, Paolini AG (2010) An in vivo investigation of first spike latencies in the inferior colliculus in response to multichannel penetrating auditory brainstem implant stimulation. J Neural Eng 7(3):036004. https://doi.org/10.1088/1741-2560/7/3/036004

McCreery DB, Han M, Pikov V (2010) Neuronal activity evoked in the inferior colliculus of the cat by surface macroelectrodes and penetrating microelectrodes implanted in the cochlear nucleus. IEEE Trans Biomed Eng 57(7):1765–1773. https://doi.org/10.1109/TBME.2010.2046169

Article  PubMed  Google Scholar 

McCreery DB, Lossinsky A, Pikov V (2007) Performance of multisite silicon microprobes implanted chronically in the ventral cochlear nucleus of the cat. IEEE Trans Biomed Eng 54(6):1042–1052. https://doi.org/10.1109/TBME.2007.891167

Article  PubMed  Google Scholar 

McInturff S, Coen F-V, Hight AE, Tarabichi O, Kanumuri VV, Vachicouras N, Lacour SP, Lee DJ, Brown MC (2022) Comparison of responses to DCN vs. VCN stimulation in a mouse model of the auditory brainstem implant (ABI). JARO 23(3):391–412. https://doi.org/10.1007/s10162-022-00840-8

Shivdasani MN, Mauger SJ, Argent RE, Rathbone GD, Paolini AG (2010) Inferior colliculus responses to dual-site intralamina stimulation in the ventral cochlear nucleus. J Comparat Neurol 518(20):4226–4242. https://doi.org/10.1002/cne.22450

Article  PubMed  Google Scholar 

Shivdasani MN, Mauger SJ, Rathbone GD, Paolini AG (2007) Inferior colliculus responses to multichannel microstimulation of the ventral cochlear nucleus: implications for auditory brain stem implants. J Neurophysiol 99(1):1–13. https://doi.org/10.1152/jn.00629.2007

Article  PubMed  Google Scholar 

Mauger SJ, Shivdasani MN, Rathbone GD, Paolini AG (2012) An in vivo investigation of inferior colliculus single neuron responses to cochlear nucleus pulse train stimulation. J Neurophysiol 108(11):2999–3008. https://doi.org/10.1152/jn.01087.2011

Article  PubMed  Google Scholar 

McCreery DB, Han M, Pikov V, Yadav K, Pannu S (2013) Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate. J Neural Eng 10(5):1–17. https://doi.org/10.1088/1741-2560/10/5/056010

Article  Google Scholar 

Azadpour M, Shapiro WH, Roland Jr JT, Svirsky MA (2021) Assessing temporal responsiveness of primary stimulated neurons in auditory brainstem and cochlear implant users. Hear Res 401:108163. https://doi.org/10.1016/j.heares.2020.108163

Carlyon RP, Deeks JM, McKay CM (2015) Effect of pulse rate and polarity on the sensitivity of auditory brainstem and cochlear implant users to electrical stimulation. JARO 16(5):653–668. https://doi.org/10.1007/s10162-015-0530-z

Article  PubMed  PubMed Central  Google Scholar 

Green T, Faulkner A, Rosen S (2012) Variations in carrier pulse rate and the perception of amplitude modulation in cochlear implant users. Ear Hear 33(2):221–230. https://doi.org/10.1097/AUD.0b013e318230fff8

Article  PubMed  Google Scholar 

Kirby AE, Middlebrooks JC (2012) Unanesthetized auditory cortex exhibits multiple codes for gaps in cochlear implant pulse trains. JARO 13(1):67–80. https://doi.org/10.1007/s10162-011-0293-0

Article  PubMed  Google Scholar 

Azadpour M, McKay CM, Svirsky MA (2018) Effect of pulse rate on loudness discrimination in cochlear implant users. JARO 19(3):287–299. https://doi.org/10.1007/s10162-018-0658-8

Article  PubMed  PubMed Central  Google Scholar 

Galvin JJ, Fu Q-J (2005) Effects of stimulation rate, mode and level on modulation detection by cochlear implant users. JARO 6(3):269–279. https://doi.org/10.1007/s10162-005-0007-6

Article  PubMed  PubMed Central  Google Scholar 

Babalian AL, Ryugo DK, Rouiller EM (2003) Discharge properties of identified cochlear nucleus neurons and auditory nerve fibers in response to repetitive electrical stimulation of the auditory nerve. Exp Brain Res 153(4):452–460. https://doi.org/10.1007/s00221-003-1619-x

Article  PubMed  Google Scholar 

Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84(2):541–577. https://doi.org/10.1152/physrev.00029.2003

Article  CAS  PubMed  Google Scholar 

Fu QJ (2002) Temporal processing and speech recognition in cochlear implant users. NeuroReport 13(13):1635–1639. https://doi.org/10.1097/00001756-200209160-00013

Article  PubMed  Google Scholar 

McCreery DB, Yadev K, Han M (2018) Responses of neurons in the feline inferior colliculus to modulated electrical stimuli applied on and within the ventral cochlear nucleus; Implications for an advanced auditory brainstem implant. Hear Res 363:85–97. https://doi.org/10.1016/j.heares.2018.03.009

Article  PubMed  PubMed Central  Google Scholar 

Guex AA, Vachicouras N, Hight AE, Brown MC, Lee DJ, Lacour SP (2015) Conducting polymer electrodes for auditory brainstem implants. J Mater Cham B Mater Biol Med 3(25):5021–5027. https://doi.org/10.1039/c5tb00099h

Article  CAS  Google Scholar 

Cochlear (2010) Cochlear Clinical Guidance Document

Hight AE, Kozin ED, Darrow KN, Lehmann A, Boyden ES, Brown MC, Lee DJ (2015) Temporal resolution of ChR2 and chronos in an optogenetic-based auditory brainstem implant model: implications for the development and application of auditory opsins. Hear Res 322:235–241. https://doi.org/10.1016/j.heares.2015.01.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Middlebrooks JC, Snyder RL (2010) Selective electrical stimulation of the auditory nerve activates a pathway specialized for high temporal acuity. J Neurosci 30(5):1937–1946. https://doi.org/10.1523/JNEUROSCI.4949-09.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vollmer M, Snyder RL, Leake PA, Beitel RE, Moore CM, Rebscher SJ (1999) Temporal properties of chronic cochlear electrical stimulation determine temporal resolution of neurons in cat inferior colliculus. J Neurophysiol 82(6):2883–2902. https://doi.org/10.1152/jn.1999.82.6.2883

Article  CAS  PubMed  Google Scholar 

Hancock KE, Chung Y, Delgutte B (2013) Congenital and prolonged adult-onset deafness cause distinct degradations in neural ITD coding with bilateral cochlear implants. JARO 14(3):393–411. https://doi.org/10.1007/s10162-013-0380-5

Article  PubMed  PubMed Central  Google Scholar 

Chung Y, Hancock KE, Nam SI, Delgutte B (2014) Coding of electric pulse trains presented through cochlear implants in the auditory midbrain of awake rabbit: Comparison with anesthetized preparations. J Neurosci 34(1):218–231. https://doi.org/10.1523/JNEUROSCI.2084-13.2014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anniko M, Sjostrom B, Webster D (1989) The effects of auditory deprivation on morphological maturation of the ventral cochlear nucleus. Arch Otorhinolaryngol 246:43–47. https://doi.org/10.1007/BF00454133

Article  CAS  PubMed  Google Scholar 

Glendenning KK, Masterton RB (1998) Comparative morphometry of mammalian central auditory systems: variation in nuclei and form of the ascending system. Brain Behav Evol 51(2):59–89. https://doi.org/10.1159/000006530

Article  CAS  PubMed  Google Scholar 

Godfrey DA, Lee AC, Hamilton WD, Benjamin LCI, Vishwanath S, Simo H, Godfrey LM, Mustapha A, Heffner RS (2016) Volumes of cochlear nucleus regions in rodents. Hear Res 339:161–174. https://doi.org/10.1097/SLA.0000000000001177.Complications

Article  PubMed  PubMed Central  Google Scholar 

Konigsmark BW, Murphy EA (1972) Volume of the ventral cochlear nucleus in man: its relationship to neuronal population and age. J Neuropathol Exp Neurol 2:304–3016. https://doi.org/10.1097/00005072-197204000-00006

Article  Google Scholar 

Lambert PR, Schwartz IR (1982) A longitudinal study of changes in the cochlear nucleus in the CBA mouse. Otolaryngol Head Neck Surg 90:787–794. https://doi.org/10.1177/019459988209000620

Article  CAS  PubMed  Google Scholar 

Seldon HL, Clark GM (1991) Human cochlear nucleus: comparison of Nissl-stained neurons from deaf and hearing patients. Brain Res 551(1–2):185–194. https://doi.org/10.1016/0006-8993(91)90932-L

Article  CAS  PubMed  Google Scholar 

Trune DR (1982) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: I. Number, size, and density of its neurons. J Comp Neurol 209(4):409–424. https://doi.org/10.1002/cne.902090410

Webster DB (1985) The spiral ganglion and cochlear nuclei of deafness mice. Hear Res 18:19–27. https://doi.org/10.1016/0378-5955(85)90107-8

Article  CAS  PubMed  Google Scholar 

Webster DB, Trune DR (1982) Cochlear nuclear complex of mice. Am J Anatom 163(2):103–130. https://doi.org/10.1002/aja.1001630202

Article 

留言 (0)

沒有登入
gif