Conditions Underlying the Appearance of Spontaneous Otoacoustic Emissions in Mammals

Long GR (2011) Why bother looking at a range of species? J Acoust Soc Amer 129(4):2446

Article  Google Scholar 

Manley GA, Van Dijk P (2008) Otoacoustic emissions in amphibians, lepidosaurs and archosaurs. In: Manley GA, Fay RR, Popper A (eds) Active processes and otoacoustic emissions in Hearing; Springer Handbook of Auditory Research, vol 30. Springer-Verlag, New York, pp 211–260

Chapter  Google Scholar 

Van Dijk P, Narins PM, Wang J (1996) Spontaneous otoacoustic emissions in seven frog species. Hear Res 101:102–112

Article  PubMed  Google Scholar 

Manley GA, Köppl C (2008) What have lizard ears taught us about auditory physiology? Hear Res 238:3–11

Article  PubMed  Google Scholar 

Taschenberger G, Manley GA (1997) Spontaneous otoacoustic emissions in the barn owl. Hear Res 110:61–76

Article  CAS  PubMed  Google Scholar 

Sellon JB, Ghaffari R, Freeman DM (2019) The tectorial membrane: mechanical properties and functions. Cold Spring Harb Perspect Med 9(10):a033514. https://doi.org/10.1101/cshperspect.a033514

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goodyear RJ, Richardson GP (2018) Structure, function, and development of the tectorial membrane: an extracellular matrix essential for hearing. Curr Top Dev Biol 130:217–244. https://doi.org/10.1016/bs.ctdb.2018.02.006

Article  CAS  PubMed  Google Scholar 

Greenwood D (1961) Critical bandwidth and the frequency coordinates of the basilar membrane. J Acoust Soc Amer 33(10):1344–1356

Article  Google Scholar 

Müller M, von Hünerbein K, Hoidis S, Smolders JWT (2005) A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73

Article  PubMed  Google Scholar 

Müller M (1996) The cochlear place-frequency map of the adult and developing Mongolian gerbil. Hear Res 94:148–156

Article  PubMed  Google Scholar 

Begall S, Lange S, Schleich C, Burda H (2007) Acoustics, audition and auditory system. In: Begall S, Burda H, Schleich CE (eds) Subterranean Rodents: News from Underground. Springer, Berlin, pp 97–111

Chapter  Google Scholar 

Müller M (1991) Frequency representation in the rat cochlea. Hear Res 51:247–254

Article  PubMed  Google Scholar 

Gleich O, Manley GA (2000) The hearing organ of birds and Crocodilia. In: Dooling R, Fay RR, Popper AN (eds) Comparative hearing: birds and reptiles. Springer Handbook of Auditory Research, vol. 13. Springer, New York, pp 70–138

Manley GA (2011) Lizard auditory papillae: an evolutionary kaleidoscope. Hear Res 273:59–64. https://doi.org/10.1016/j.heares.2010.02.015

Article  PubMed  Google Scholar 

Manley GA (1997) Diversity in hearing-organ structure and the characteristics of spontaneous otoacoustic emissions in lizards. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR (eds) Diversity in Auditory Mechanics. World Scientific Publishing Co., Singapore, pp 32–38

Google Scholar 

Manley GA (2001) Evidence for an active process and a cochlear amplifier in non-mammals. J Neurophysiol 86:541–549

Article  CAS  PubMed  Google Scholar 

Long GR, van Dijk P, Wit HP (1996) Temperature dependence of spontaneous otoacoustic emissions in the edible frog (Rana esculenta). Hear Ras 98:22–28

Article  CAS  Google Scholar 

Hudspeth AJ (2008) Making an effort to listen: mechanical amplification in the ear. Neuron 59:530–545

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Dijk P, Manley GA (2001) Distortion-product otoacoustic emissions in the tree frog Hyla cinerea. Hear Res 153:14–22

Article  PubMed  Google Scholar 

Manley GA (2022) Otoacoustic emissions in non-mammals. Audiol Res 12:260–272

Article  PubMed  PubMed Central  Google Scholar 

Manley GA (2023) The history of lizard auditory research. In: Ketten D, Coffin A, Popper AN, Fay RR (eds) A History of Discoveries on Hearing. New York, Springer, pp 113–149. ISBN 978-3-031-41319-3

Google Scholar 

Köppl C (1988) Morphology of the basilar papilla of the bobtail lizard Tiliqua rugosa. Hear Res 35:209–228

Article  PubMed  Google Scholar 

Manley GA, Wartini A, Schwabedissen G, Siegl E (2018) Spontaneous otoacoustic emissions in Teiid lizards. Hear Res 363:98–108. https://doi.org/10.1016/j.heares.2018.03.010

Article  PubMed  Google Scholar 

Manley GA (2004) Spontaneous otoacoustic emissions in monitor lizards. Hear Res 189:41–57

Article  PubMed  Google Scholar 

Manley GA (2004) The lizard basilar papilla and its evolution. In: Manley GA, Popper A, Fay RR (eds) Evolution of the Vertebrate Auditory System. Springer, New York, pp 200–223

Chapter  Google Scholar 

Manley GA, Köppl C (1992) A comparison of peripheral tuning measures: primary afferent tuning curves versus suppression tuning curves of spontaneous and distortion-product otoacoustic emissions. In: Cazals Y, Demany L, Horner K (eds) Auditory Physiology and Perception. Pergamon Press, Oxford, New York, pp 151–158

Chapter  Google Scholar 

Köppl C, Authier S (1995) Quantitative anatomical basis for a model of micromechanical frequency tuning in the Tokay gecko, Gekko gecko. Hear Res 82:14–25

Article  PubMed  Google Scholar 

Manley GA, Köppl C, Yates GK (1989) Micromechanical basis of high-frequency tuning in the bobtail lizard. In: Wilson JP, Kemp D (eds) Mechanics of Hearing. Plenum Press, New York, pp 143–150

Google Scholar 

Köppl C (2015) Avian Hearing. In: Scanes CG (ed) Sturkie’s Avian Physiology, 6th edn. Elsevier, pp 71–111

Chapter  Google Scholar 

Bergevin C, Manley GA, Köppl C (2015) Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms. Proc Nat Acad Sci 112(11):3362–3367. https://doi.org/10.1073/pnas.1418569112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Köppl C, Gleich O, Manley GA (1993) An auditory fovea in the barn owl cochlea. J Comp Physiol 171:695–704

Article  Google Scholar 

Ruggero MA, Kramek B, Rich NC (1984) Spontaneous otoacoustic emissions in a dog. Hear Res 13:293–296

Article  CAS  PubMed  Google Scholar 

Zurek PM, Clark WW (1981) Narrow-band acoustic signals emitted by chinchilla ears after noise exposure. Z Acoust Soc Amer 70(2):446–450

Article  Google Scholar 

Clark WW, Kim DO, Zurek PM, Bohne BA (1984) Spontaneous otoacoustic emissions in chinchilla ear canals: correlation with histopathology and suppression by external tones. Hear Res 16:299–314

Article  CAS  PubMed  Google Scholar 

Long GR, Shaffer LA, Dhar S, Talmadge CL (2000) Cross species comparison of otoacoustic fine structure. In: Wada H, Takasaka T, Ohyama K, Ikeda K, Koike T (eds) Recent Developments in Auditory Mechanics. World Scientific Press, Singapore, pp 367–373

Chapter  Google Scholar 

Lonsbury-Martin BL, Martin GK (1988) Incidence of spontaneous otoacoustic emissions in macaque monkeys: a replication. Hear Res 34:313–318

Article  CAS  PubMed  Google Scholar 

Ohyama K, Wada H, Kobayashai T, Takasaka T (1991) Spontaneous otoacoustic emissions in the guinea pig. Hear Res 56:111–121

Article  CAS  PubMed  Google Scholar 

Abdala C, Luo P, Shera CA (2017) Characterizing spontaneous otoacoustic emissions across the human lifespan. J Acoust Soc Amer 141:1874–1886

Article  Google Scholar 

Talmadge CL, Long GR, Murphy WJ, Tubis A (1994) New off-line method for detecting spontaneous otoacoustic emissions in human subjects. Hear Res 71(1–2):170–182. https://doi.org/10.1016/0378-5955(93)90032-V

Article  Google

Comments (0)

No login
gif