Brouwer MC, Tunkel AR, van de Beek D (2010) Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin Microbiol Rev 23(3):467–492. https://doi.org/10.1128/CMR.00070-09
Article CAS PubMed PubMed Central Google Scholar
Kloek AT, Brouwer MC, Schmand B, Tanck MWT, van de Beek D (2020) Long-term neurologic and cognitive outcome and quality of life in adults after pneumococcal meningitis. Clin Microbiol Infect 26(10):1361–1367. https://doi.org/10.1016/j.cmi.2020.01.020
Article CAS PubMed Google Scholar
Lee S et al (2010) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 177(5):2549–2562. https://doi.org/10.2353/ajpath.2010.100265
Article CAS PubMed PubMed Central Google Scholar
Hirose K, Li S-Z (2019) The role of monocytes and macrophages in the dynamic permeability of the blood-perilymph barrier. Hear Res 374:49–57. https://doi.org/10.1016/j.heares.2019.01.006
Article CAS PubMed PubMed Central Google Scholar
Sautter NB, Shick EH, Ransohoff RM, Charo IF, Hirose K (2006) CC chemokine receptor 2 is protective against noise-induced hair cell death: studies in CX3CR1(+/GFP) mice. J Assoc Res Otolaryngol 7(4):361–372. https://doi.org/10.1007/s10162-006-0051-x
Article PubMed PubMed Central Google Scholar
Cardona AE et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924. https://doi.org/10.1038/nn1715
Article CAS PubMed Google Scholar
Hughes PM, Botham MS, Frentzel S, Mir A, Perry VH (2002) Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia 37(4):314–327
Saederup N et al (2010) Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS ONE 5(10):e13693. https://doi.org/10.1371/journal.pone.0013693
Article CAS PubMed PubMed Central Google Scholar
Kaur T et al (2015) Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion. J Neurosci Off J Soc Neurosci 35(45):15050–15061. https://doi.org/10.1523/JNEUROSCI.2325-15.2015
Sato E, Shick EH, Ransohoff R, Hirose K (2008) CX3CR1 expression in cochlear macrophages down-regulates kanamycin ototoxicity. Assoc Res Otolaryngol Abstr 31:247
Stojković L et al (2012) The association of V249I and T280M fractalkine receptor haplotypes with disease course of multiple sclerosis. J Neuroimmunol 245(1–2):87–92. https://doi.org/10.1016/j.jneuroim.2011.12.028
Article CAS PubMed Google Scholar
Blauth K, Zhang X, Chopra M, Rogan S, Markovic-Plese S (2015) The role of fractalkine (CX3CL1) in regulation of CD4(+) cell migration to the central nervous system in patients with relapsing-remitting multiple sclerosis. Clin Immunol Orlando Fla 157(2):121–132. https://doi.org/10.1016/j.clim.2015.01.001
Brodie HA, Thompson TC, Vassilian L, Lee BN (1998) Induction of labyrinthitis ossificans after pneumococcal meningitis: an animal model. Otolaryngol Head Neck Surg 118(1):15–21. https://doi.org/10.1016/S0194-5998(98)70369-9
Article CAS PubMed Google Scholar
Igarashi M, Saito R, Alford BR, Filippone MV, Smith JA (1974) Temporal bone findings in pneumococcal meningitis. Arch Otolaryngol 99(2):79–83. https://doi.org/10.1001/archotol.1974.00780030085001
Article CAS PubMed Google Scholar
Kesser BW, Hashisaki GT, Spindel JH, Ruth RA, Scheld WM (1999) Time course of hearing loss in an animal model of pneumococcal meningitis. Otolaryngol Neck Surg 120(5):628–637. https://doi.org/10.1053/hn.1999.v120.a92772
Klein M, Koedel U, Pfister H-W, Kastenbauer S (2003) Morphological correlates of acute and permanent hearing loss during experimental pneumococcal meningitis. Brain Pathol 13(2):123–132. https://doi.org/10.1111/j.1750-3639.2003.tb00012.x
Merchant SN, Gopen Q (1996) A human temporal bone study of acute bacterial meningogenic labyrinthitis. Am J Otol 17(3):375–385
Møller MN, Brandt C, Østergaard C, Caye-Thomasen P (2014) Bacterial invasion of the inner ear in association with pneumococcal meningitis. Otol Neurotol 35(5):e178. https://doi.org/10.1097/MAO.0000000000000305
Nabili V, Brodie HA, Neverov NI, Tinling SP (1999) Chronology of labyrinthitis ossificans induced by streptococcus pneumoniae meningitis. Laryngoscope 109(6):931–935. https://doi.org/10.1097/00005537-199906000-00017
Article CAS PubMed Google Scholar
Bhatt SM et al (1995) The impact of dexamethasone on hearing loss in experimental pneumococcal meningitis. Pediatr Infect Dis J 14(2):93–96. https://doi.org/10.1097/00006454-199502000-00002
Article CAS PubMed Google Scholar
Brouwer MC, McIntyre P, Prasad K, van de Beek D (2015) Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev 9:4405. https://doi.org/10.1002/14651858.CD004405.pub5
Kim HH, Addison J, Suh E, Trune DR, Richter C-P (2007) Otoprotective effects of dexamethasone in the management of pneumococcal meningitis: an animal study. Laryngoscope 117(7):1209–1215. https://doi.org/10.1097/MLG.0b013e318058195f
Article CAS PubMed Google Scholar
Worsøe L, Brandt CT, Lund SP, Østergaard C, Thomsen J, Cayé-Thomasen P (2010) Intratympanic steroid prevents long-term spiral ganglion neuron loss in experimental meningitis. Otol Neurotol 31(3):394–403. https://doi.org/10.1097/MAO.0b013e3181d2796c
Liechti FD, Grandgirard D, Leib SL (2015) Bacterial meningitis: insights into pathogenesis and evaluation of new treatment options: a perspective from experimental studies. Future Microbiol 10(7):1195–1213. https://doi.org/10.2217/fmb.15.43
Article CAS PubMed Google Scholar
Mynatt R, Hale SA, Gill RM, Plontke SK, Salt AN (2006) Demonstration of a longitudinal concentration gradient along scala tympani by sequential sampling of perilymph from the cochlear apex. J Assoc Res Otolaryngol 7(2):182–193. https://doi.org/10.1007/s10162-006-0034-y
Article PubMed PubMed Central Google Scholar
Hirose K, Discolo CM, Keasler JR, Ransohoff R (2005) Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 489(2):180–194. https://doi.org/10.1002/cne.20619
Sato E, Shick HE, Ransohoff RM, Hirose K (2010) Expression of fractalkine receptor CX3CR1 on cochlear macrophages influences survival of hair cells following ototoxic injury. J Assoc Res Otolaryngol 11(2):223–234. https://doi.org/10.1007/s10162-009-0198-3
Hirose K, Li S-Z, Ohlemiller KK, Ransohoff RM (2014) Systemic lipopolysaccharide induces cochlear inflammation and exacerbates the synergistic ototoxicity of kanamycin and furosemide. J Assoc Res Otolaryngol 15(4):555–570. https://doi.org/10.1007/s10162-014-0458-8
Article PubMed PubMed Central Google Scholar
Salt AN, Hirose K (2018) Communication pathways to and from the inner ear and their contributions to drug delivery. Hear Res 362:25–37. https://doi.org/10.1016/j.heares.2017.12.010
Article CAS PubMed Google Scholar
Scheld WM, Dacey RG, Winn HR, Welsh JE, Jane JA, Sande MA (1980) Cerebrospinal fluid outflow resistance in rabbits with experimental meningitis. Alterations with penicillin and methylprednisolone. J Clin Invest 66(2):243–253. https://doi.org/10.1172/JCI109850
Comments (0)