Kemp DT (1976) Active resonance systems in audition. 13th International Congress of Audiology, Bari, Italy, Abstracts 64–65
Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391. https://doi.org/10.1121/1.382104
Article CAS PubMed Google Scholar
Bergevin C, Manley GA, Köppl C (2015) Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms. Proc Nat Acad Sci (PNAS) 112(11):3362–67. https://doi.org/10.1073/pnas.1418569112
Article CAS PubMed Google Scholar
Gold T (1948) Hearing II. The physical basis of the action of the cochlea. Proc Royal Soc B 135:492–98
Bell A (2005) The underwater piano: a resonance theory of cochlear mechanics. PhD thesis, Australian National University, Canberra. https://dx.doi.org/10.25911/5d7a2c6dcff7f
Gold T (1988) Historical background to the proposal, 40 years ago, of an active model for cochlear frequency analysis. In: Wilson JP, Kemp DT (eds) Cochlear mechanisms, structure, function and models. Plenum Press, New York, pp 299–305
Goldstein JL (1967) Auditory nonlinearity. J Acoust Soc Am 41:676–89
Article CAS PubMed Google Scholar
Nuttall AL, Grosh K, Zheng J, De Boer E, Zou Y, Ren T (2004) Spontaneous basilar membrane oscillation and otoacoustic emission at 15 kHz in a guinea pig. J Assoc Res Otolaryngol 5:337–48
Article CAS PubMed PubMed Central Google Scholar
Wit HP, Ritsma RJ (1979) Stimulated emissions from the human ear. J Acoust Soc Am 66:911–913. https://doi.org/10.1121/1.383202
Wit HP, Ritsma RJ (1980) Evoked responses from the human ear: some experimental results. Hear Res 2:253–261. https://doi.org/10.1016/0378-5955(80)90061-1
Article CAS PubMed Google Scholar
Rutten WLC (1980) Evoked acoustic emissions from within normal and abnormal human ears: comparison with audiometric and electrocochleographic findings. Hear Res 2:263–271. https://doi.org/10.1016/0378-5955(80)90062-3
Article CAS PubMed Google Scholar
Schloth E (1980) Amplitudengang der im äuszeren Gehörgang gemessenen akustischen Antworten auf Schallreize. Acustica 44:239–41
Wilson JP (1980) Evidence for cochlear origin for acoustic re-emissions, threshold fine-structure and tonal tinnitus. Hear Res 2:233–252. https://doi.org/10.1016/0378-5955(80)90060-X
Article CAS PubMed Google Scholar
Probst R, Lonsbury-Martin BL, Martin GK (1991) A review of otoacoustic emissions. J Acoust Soc Am 89:2027–2067. https://doi.org/10.1121/1.400897
Article CAS PubMed Google Scholar
Kemp DT (1979) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch Otorhinolaryngol 224:37–45
Article CAS PubMed Google Scholar
Wilson JP (1980) Recording of the Kemp echo and tinnitus from the ear canal without averaging. J Physiol 298:8-9P
Zurek PM (1980) Objective tonal tinnitus. J Acoust Soc Am 68(Suppl 1):S44
Zurek PM (1981) Spontaneous narrowband acoustic signals emitted by human ears. J Acoust Soc Am 69:514–23
Article CAS PubMed Google Scholar
Wit HP, Langevoort JC, Ritsma RJ (1981) Frequency spectra of cochlear acoustic emissions (Kemp-echoes). J Acoust Soc Am 70:437–445
Johannesma PIM (1980) Narrow band filters and active resonators. Comments on papers by DT Kemp & RJ Chum, and HP Wit & RJ Ritsma. In: van de Brink G, Bilsen FA (eds) Psychophysical, physiological, and behavioural studies in hearing. Delft University Press, Delft, pp 62–63
Van der Pol B (1920) A theory of the amplitude of free and forced triode vibrations. Radio Review (later Wireless World) 1:701–710
Long GR, Tubis A (1988) Modification of spontaneous and evoked otoacoustic emissions and associated psychoacoustic microstructure by aspirin consumption. J Acoust Soc Am 84:1343–1353. https://doi.org/10.1121/1.396633
Article CAS PubMed Google Scholar
Long GL, Tubis A (1988) Investigations into the nature of the association between threshold microstructure and otoacoustic emissions. Hear Res 36:125–138. https://doi.org/10.1016/0378-5955(88)90055-x
Article CAS PubMed Google Scholar
Bialek W, Wit HP (1984) Quantum limits to oscillator stability: theory and experiments on acoustic emissions from the human ear. Phys Lett 104A(3):173–178
Van Dijk P, Wit HP, Segenhout JM (1989) Spontaneous otoacoustic emissions in the European edible frog (Rana Esculenta): spectral details and temperature dependence. Hear Res 42:273–282
Zwicker E, Schloth E (1984) Interrelation of different oto-acoustic emissions. J Acoust Soc Am 75:1148–1154. https://doi.org/10.1121/1.390763
Article CAS PubMed Google Scholar
Long GR, Tubis A, Jones KL (1991) Modeling synchronization and suppression of spontaneous otoacoustic emissions using Van der Pol oscillators: effects of aspirin administration. J Acoust Soc Am 89:1201–1212
Article CAS PubMed Google Scholar
van Dijk P, Wit HP (1990) Synchronization of spontaneous otoacoustic emissions to a \(2f_1-f_2\) distortion product. J Acoust Soc Am 88:850–856
van Dijk P, Wit HP (1998) Synchronization of cubic distortion spontaneous otoacoustic emissions. J Acoust Soc Am 104:591–594
Talmadge CL, Tubis A, Wit HP, Long GR (1991) Are spontaneous otoacoustic emissions generated by self-sustained cochlear oscillators? J Acoust Soc Am 89:2391–2399. https://doi.org/10.1121/1.400958
Article CAS PubMed Google Scholar
Duifhuis H, Hoogstraten HW, van Netten SM, Diependaal RJ, Bialek W (1986) Modelling the cochlear partition with coupled van der Pol oscillators. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral auditory mechanisms. Lecture notes in biomathematics vol 64, Springer-Verlag Berlin Heidelberg, pp 290–298. https://doi.org/10.1007/978-3-642-50038-1
van den Raadt MPGM, Duifhuis H (1990) A generalized Van der Pol-oscillator model. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The mechanics and biophysics of hearing. Lecture notes in biomathematics vol 87, Springer-Verlag Berlin Heidelberg, pp 227–233. https://doi.org/10.1007/978-1-4757-4341-8
van Hengel PWJ, Duifhuis H, van den Raadt MPMG (1996) Spatial periodicity in the cochlea: the result of interaction of spontaneous emissions? J Acoust Soc Am 99:3566–3571. https://doi.org/10.1121/1.414955
Talmadge CL, Long GR, Murphy WJ, Tubis A (1993) New offline method for detecting spontaneous otoacoustic emissions in human subjects. Hear Res 71:170–182
Article CAS PubMed Google Scholar
Elliott SJ, Ku EM, Lineton B (2007) A state space model for cochlear mechanics. J Acoust Soc Am 122:2759–2771
Ku EM, Elliott SJ, Lineton B (2009) Limit cycle oscillations in a nonlinear state space model of the human cochlea. J Acoust Soc Am 126:739–750
Elliott S, Ni G (2018) An elemental approach to modelling the mechanics of the cochlea. Hear Res 300:14–24
Vignali D (2017) Modelling nonlinear interactions within the cochlea. Doctoral Thesis, University of Southampton. http://eprints.soton.ac.uk/id/eprint/412704
Wit HP (2021) How an array of discrete resonators, coupled by fluid, can reproduce the dynamics of click-evoked otoacoustic emissions. J Hear Sci 11(1):54–62. https://doi.org/10.17430/JHS.2021.11.1.6
van Dijk P, Wit HP (1990) Amplitude and frequency fluctuations of spontaneous otoacoustic emissions. J Acoust Soc Am 88:1779–1793. https://doi.org/10.1121/1.400199
van Dijk P, Wit HP, Tubis A, Talmadge CR, Long GR (1994) Correlation between amplitude and frequency fluctuations of spontaneous otoacoustic emissions. J Acoust Soc Am 96:163–169. https://doi.org/10.1121/1.411438
Bell A (1992) Circadian and menstrual rhythms in frequency variations of spontaneous otoacoustic emissions from human ears. Hear Res 58:91–100
Comments (0)