Modulation of Human Hydrogen Sulfide Metabolism by Micronutrients, Preliminary Data

1. Giuffrè, A, Vicente, JB. Hydrogen sulfide biochemistry and interplay with other gaseous mediators in mammalian physiology. Oxid Med Cell Longev. 2018;2018:6290931.
Google Scholar | Crossref | Medline2. Citi, V, Martelli, A, Gorica, E, Brogi, S, Testai, L, Calderone, V. Role of hydrogen sulfide in endothelial dysfunction: pathophysiology and therapeutic approaches. J Adv Res. 2021;27:99-113.
Google Scholar | Crossref | Medline3. d’Emmanuele di Villa Bianca, R, Sorrentino, R, Mirone, V, Cirino, G. Hydrogen sulfide and erectile function: a novel therapeutic target. Nat Rev Urol. 2011;8:286-289.
Google Scholar | Crossref | Medline4. Szijártó, IA, Markó, L, Filipovic, MR, et al. Cystathionine γ-Lyase-produced hydrogen sulfide controls endothelial NO bioavailability and blood pressure. Hypertension. 2018;71:1210-1217.
Google Scholar | Crossref | Medline5. Zhang, H, Huang, Y, Chen, S, et al. Hydrogen sulfide regulates insulin secretion and insulin resistance in diabetes mellitus, a new promising target for diabetes mellitus treatment? A review. J Adv Res. 2021;27:19-30.
Google Scholar | Crossref | Medline6. Shefa, U, Kim, M-S, Jeong, NY, Jung, J. Antioxidant and cell-signaling functions of hydrogen sulfide in the central nervous system. Oxid Med Cell Longev. 2018;2018:1873962.
Google Scholar | Crossref | Medline7. Dilek, N, Papapetropoulos, A, Toliver-Kinsky, T, Szabo, C. Hydrogen sulfide: an endogenous regulator of the immune system. Pharmacol Res. 2020;161:105119.
Google Scholar | Crossref | Medline8. Bazhanov, N, Ivanciuc, T, Wu, H, et al. Thiol activated hydrogen sulfide donors antiviral and anti-inflammatory activity in respiratory syncytial virus infection. Viruses. 2018;10:249.
Google Scholar | Crossref9. Dattilo, M . The role of host defences in covid 19 and treatments thereof. Mol Med. 2020;26:90.
Google Scholar | Crossref | Medline10. Yang, G . H2S as a potential defense against COVID-19? Am J Physiol Cell Physiol. 2020;319:C244-C249.
Google Scholar | Crossref | Medline11. Bourgonje, AR, Offringa, AK, van Eijk, LE, et al. N-Acetylcysteine and hydrogen sulfide in coronavirus disease 2019. Antioxid Redox Signal. 2021;35:1207-1225.
Google Scholar | Crossref | Medline12. Powell, CR, Dillon, KM, Matson, JB. A review of hydrogen sulfide (H2S) donors: chemistry and potential therapeutic applications. Biochem Pharmacol. 2018;149:110-123.
Google Scholar | Crossref | Medline13. Szabo, C, Ransy, C, Módis, K, et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol. 2014;171:2099-2122.
Google Scholar | Crossref | Medline14. Ereño-Orbea, J, Majtan, T, Oyenarte, I, Kraus, JP, Martínez-Cruz, LA. Structural insight into the molecular mechanism of allosteric activation of human cystathionine β-synthase by S adenosylmethionine. Proc Natl Acad Sci U S A. 2014;111:E3845-E3852.
Google Scholar | Crossref | Medline15. Singh, S, Padovani, D, Leslie, RA, Chiku, T, Banerjee, R. Relative contributions of Cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem. 2009;284:22457-22466.
Google Scholar | Crossref | Medline | ISI16. Banerjee, R . Catalytic promiscuity and heme-dependent redox regulation of H2S synthesis. Curr Opin Chem Biol. 2017;37:115-121.
Google Scholar | Crossref | Medline17. Kabil, O, Yadav, V, Banerjee, R. Heme-dependent metabolite switching regulates H2S synthesis in response to endoplasmic reticulum (ER) stress. J Biol Chem. 2016;291:16418-16423.
Google Scholar | Crossref | Medline18. Yang, J, Minkler, P, Grove, D, et al. Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6. Commun Biol. 2019;2:194.
Google Scholar | Crossref | Medline19. Berrazaga, I, Micard, V, Gueugneau, M, Walrand, S. The role of the anabolic properties of plant- versus animal-based protein sources in supporting muscle mass maintenance: a critical review. Nutrients. 2019;11:1825.
Google Scholar | Crossref20. Zhubi-Bakija, F, Bajraktari, G, Bytyçi, I, et al. The impact of type of dietary protein, animal versus vegetable, in modifying cardiometabolic risk factors: a position paper from the International Lipid Expert Panel (ILEP). Clin Nutr. 2021;40:255-276.
Google Scholar | Crossref | Medline21. Stipanuk, MH, Ueki, I, Dominy, JE, Simmons, CR, Hirschberger, LL. Cysteine dioxygenase: a robust system for regulation of cellular Cysteine levels. Amino Acids. 2009;37:55-63.
Google Scholar | Crossref | Medline22. Maclean, KN, Jiang, H, Aivazidis, S, et al. Taurine treatment prevents derangement of the hepatic γ-glutamyl cycle and methylglyoxal metabolism in a mouse model of classical homocystinuria: regulatory crosstalk between thiol and sulfinic acid metabolism. FASEB J. 2018;32:1265-1280.
Google Scholar | Crossref | Medline23. Sun, Q, Wang, B, Li, Y, et al. Taurine supplementation lowers blood pressure and improves vascular function in prehypertension randomized, double-blind, placebo-controlled study. Hypertension. 2016;67:541-549.
Google Scholar | Crossref | Medline24. Singh, S, Banerjee, R. PLP-dependent H2S biogenesis. Biochim Biophys Acta. 2011;1814:1518-1527.
Google Scholar | Crossref | Medline25. Yin, J, Ren, W, Yang, G, et al. L-Cysteine metabolism and its nutritional implications. Mol Nutr Food Res. 2016;60:134-146.
Google Scholar | Crossref | Medline26. Ji, Y, Kong, X, Wang, G, et al. Distribution and determinants of plasma homocysteine levels in rural Chinese twins across the lifespan. Nutrients. 2014;6:5900-5914.
Google Scholar | Crossref | Medline27. IBM Corp . IBM-SPSS® version 26.0. IBM Corp; 2019.
Google Scholar28. Streiner, DL, Norman, GR. Correction for multiple testing: Is there a resolution? Chest. 2011;140:16-18.
Google Scholar | Crossref | Medline | ISI29. Mishanina, TV, Libiad, M, Banerjee, R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol. 2015;11:457-464.
Google Scholar | Crossref | Medline30. Perna, AF, Di Nunzio, A, Amoresano, A, et al. Divergent behavior of hydrogen sulfide pools and of the sulfur metabolite lanthionine, a novel uremic toxin, in dialysis patients. Biochimie. 2016;126:97-107.
Google Scholar | Crossref | Medline31. Gregory, JF, DeRatt, BN, Rios-Avila, L, Ralat, M, Stacpoole, PW. Vitamin B6 nutritional status and cellular availability of Pyridoxal 5-phosphate govern the function of the transsulfuration pathways canonical reactions and hydrogen sulfide production via side reactions. Biochimie. 2016;126:21-26.
Google Scholar | Crossref | Medline32. Kabil, O, Banerjee, R. Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal. 2014;20:770-782.
Google Scholar | Crossref | Medline | ISI33. Shinkai, Y, Kumagai, Y. Sulfane sulfur in toxicology: a novel defense system against electrophilic stress. Toxicol Sci. 2019;170:3-9.
Google Scholar | Crossref | Medline34. Kimura, H . Metabolic turnover of hydrogen sulfide. Front Physiol. 2012;3:101.
Google Scholar | Crossref | Medline35. Hipólito, A, Nunes, SC, Vicente, JB, Serpa, J. Cysteine Aminotransferase (CAT): a pivotal sponsor in metabolic remodeling and an ally of 3-mercaptopyruvate Sulfurtransferase (MST) in cancer. Molecules. 2020;25:3984.
Google Scholar | Crossref36. Lu, SC . Glutathione synthesis. Biochim Biophys Acta. 2013;1830:3143-3153.
Google Scholar | Crossref | Medline | ISI37. Bailey, SW, Ayling, JE. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci USA. 2009;106:15424-15429.
Google Scholar | Crossref | Medline38. Toohey, JI . Possible involvement of hydrosulfide in B12-dependent Methyl group transfer. Molecules. 2017;22:582.
Google Scholar | Crossref39. Crabtree, MJ, Hale, AB, Channon, KM. Dihydrofolate reductase protects endothelial nitric oxide synthase from uncoupling in tetrahydrobiopterin deficiency. Free Radic Biol Med. 2011;50:1639-1646.
Google Scholar | Crossref | Medline40. Chen, P-H, Fu, YS, Wang, Y-M, Yang, K-H, Wang, DL, Huang, B. Hydrogen sulfide increases nitric oxide production and subsequent S-nitrosylation in endothelial cells. ScientificWorldJournal. 2014;2014:480387.
Google Scholar | Medline41. Bucci, M, Papapetropoulos, A, Vellecco, V, et al. Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol. 2010;30:1998-2004.
Google Scholar | Crossref | Medline42. Zhang, C-Y, Li, XH, Zhang, T, Fu, J, Cui, X-D. Hydrogen sulfide upregulates heme oxygenase-1 expression in rats with volume overload-induced heart failure. Biomed Rep. 2013;1:454-458.
Google Scholar | Crossref | Medline43. D’Araio, E, Shaw, N, Millward, A, Demaine, A, Whiteman, M, Hodgkinson, A. Hydrogen sulfide induces heme oxygenase-1 in human kidney cells. Acta Diabetol. 2014;51:155-157.
Google Scholar | Crossref | Medline44. Matsui, T, Sugiyama, R, Sakanashi, K, et al. Hydrogen sulfide bypasses the rate-limiting oxygen activation of heme oxygenase. J Biol Chem. 2018;293:16931-16939.
Google Scholar | Crossref | Medline45. Mitidieri, E, Tramontano, T, Gurgone, D, et al. Mercaptopyruvate acts as endogenous vasodilator independently of 3-mercaptopyruvate sulfurtransferase activity. Nitric Oxide. 2018;75:53-59.
Google Scholar | Crossref | Medline46. Wójcik, OP, Koenig, KL, Zeleniuch-Jacquotte, A, Costa, M, Chen, Y. The potential protective effects of taurine on coronary heart disease. Atherosclerosis. 2010;208:19-25.
Google Scholar | Crossref | Medline | ISI

留言 (0)

沒有登入
gif