Obesogenic Diets Cause Alterations on Proteins and Theirs Post-Translational Modifications in Mouse Brains

1. Aronne, LJ. Epidemiology, morbidity, and treatment of overweight and obesity. J Clin Psychiatry. 2001;62 Suppl 23:13-22.
Google Scholar | Medline | ISI2. Smith, E, Hay, P, Campbell, L, Trollor, JN. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes Rev. 2011;12:740-755.
Google Scholar | Crossref | Medline | ISI3. Farr, SA, Yamada, KA, Butterfield, DA, et al. Obesity and hypertriglyceridemia produce cognitive impairment. Endocrinology. 2008;149:2628-2636.
Google Scholar | Crossref | Medline | ISI4. Winocur, G, Greenwood, CE, Piroli, GG, et al. Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behav Neurosci. 2005;119:1389-1395.
Google Scholar | Crossref | Medline | ISI5. Molteni, R, Barnard, RJ, Ying, Z, Roberts, CK, Gómez-Pinilla, F. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience. 2002;112:803-814.
Google Scholar | Crossref | Medline | ISI6. Stranahan, AM, Norman, ED, Lee, K, et al. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus. 2008;18:1085-1088.
Google Scholar | Crossref | Medline | ISI7. Steen, E, Terry, BM, Rivera, EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J Alzheimers Dis. 2005;7:63-80.
Google Scholar | Crossref | Medline | ISI8. de la Monte, SM, Wands, JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol. 2008;2:1101-1113.
Google Scholar | SAGE Journals9. Accardi, G, Caruso, C, Colonna-Romano, G, et al. Can Alzheimer disease be a form of type 3 diabetes? Rejuvenation Res. 2012;15:217-221.
Google Scholar | Crossref | Medline10. Adami, PVM, Quijano, C, Magnani, N, et al. Synaptosomal bioenergetic defects are associated with cognitive impairment in a transgenic rat model of early Alzheimer’s disease. J Cereb Blood Flow Metab. 2017;37:69-84.
Google Scholar | SAGE Journals11. Bell, SM, De Marco, M, Barnes, K, et al. Deficits in mitochondrial spare respiratory capacity contribute to the neuropsychological changes of Alzheimer’s disease. J Pers Med. 2020;10:32.
Google Scholar | Crossref12. Siino, V, Amato, A, Di Salvo, F, et al. Impact of diet-induced obesity on the mouse brain phospho-proteome. J Nutr Biochem. 2018;58:102-109.
Google Scholar | Crossref | Medline13. Wu, R, Dephoure, N, Haas, W, et al. Correct interpretation of comprehensive phosphorylation dynamics requires normalization by protein expression changes. Mol Cell Proteomics. 2011;10:M111.009654.
Google Scholar | Crossref | Medline14. Szklarczyk, D, Franceschini, A, Wyder, S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447-D452.
Google Scholar | Crossref | Medline | ISI15. Surwit, RS, Kuhn, CM, Cochrane, C, McCubbin, JA, Feinglos, MN. Diet-induced type II diabetes in C57BL/6J mice. Diabetes. 1988;37:1163-1167.
Google Scholar | Crossref | Medline | ISI16. Collins, S, Martin, TL, Surwit, RS, Robidoux, J. Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiol Behav. 2004;81:243-248.
Google Scholar | Crossref | Medline | ISI17. Itoh, TJ, Hisanaga, S, Hosoi, T, Kishimoto, T, Hotani, H. Phosphorylation states of microtubule-associated protein 2 (MAP2) determine the regulatory role of MAP2 in microtubule dynamics. Biochemistry. 1997;36:12574-12582.
Google Scholar | Crossref | Medline18. Gundersen, GG, Cook, TA. Microtubules and signal transduction. Curr Opin Cell Biol. 1999;11:81-94.
Google Scholar | Crossref | Medline | ISI19. Sánchez, C, Díaz-Nido, J, Avila, J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol. 2000;61:133-168.
Google Scholar | Crossref | Medline | ISI20. Palmisano, G, Parker, BL, Engholm-Keller, K, et al. A novel method for the simultaneous enrichment, identification, and quantification of phosphopeptides and sialylated glycopeptides applied to a temporal profile of mouse brain development. Mol Cell Proteomics. 2012;11:1191-1202.
Google Scholar | Crossref | Medline21. Shannon, P, Markiel, A, Ozier, O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research. 2003;13:2498–2504.
Google Scholar | Crossref | Medline | ISI22. Marchisella, F, Coffey, ET, Hollos, P. Microtubule and microtubule associated protein anomalies in psychiatric disease. Cytoskeleton. 2016;73:596-611.
Google Scholar | Crossref23. Lee, Y, Stiers, KM, Kain, BN, Beamer, LJ. Compromised catalysis and potential folding defects in in vitro studies of missense mutants associated with hereditary phosphoglucomutase 1 deficiency. J Biol Chem. 2014;289:32010-32019.
Google Scholar | Crossref | Medline24. Birsoy, K, Wang, T, Possemato, R, et al. MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat Genet. 2013;45:104-108.
Google Scholar | Crossref | Medline25. Diaz, F. Cytochrome c oxidase deficiency: patients and animal models. Biochim Biophys Acta - Mol Basis Dis. 2010;1802:100-110.
Google Scholar | Crossref26. Bozulic, LD, Malik, MT, Dean, WL. Effects of plasma membrane Ca 2+ -ATPase tyrosine phosphorylation on human platelet function. J Thromb Haemost. 2007;5:1041-1046.
Google Scholar | Crossref | Medline27. Missiaen, L, Robberecht, W, van den Bosch, L, et al. Abnormal intracellular Ca2+homeostasis and disease. Cell Calcium. 2000;28:1-21.
Google Scholar | Crossref | Medline | ISI28. Zhuo, Y, Fang, F, Lu, L, et al. White matter impairment in type 2 diabetes mellitus with and without microvascular disease. NeuroImage Clin. 2019;24:101945.
Google Scholar | Crossref | Medline29. Suzuki, A, Stern, SA, Bozdagi, O, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011;144:810-823.
Google Scholar | Crossref | Medline | ISI30. Pérez-Escuredo, J, Van Hée, VF, Sboarina, M, et al. Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta - Mol Cell Res. 2016;1863:2481-2497.
Google Scholar | Crossref31. Minjarez, B, Calderón-González, KG, Rustarazo, MLV, et al. Identification of proteins that are differentially expressed in brains with Alzheimer’s disease using iTRAQ labeling and tandem mass spectrometry. J Proteomics. 2016;139:103-121.
Google Scholar | Crossref | Medline32. Minard, KI, McAlister-Henn, L. Glucose-induced phosphorylation of the MDH2 isozyme of malate dehydrogenase in Saccharomyces cerevisiae. Arch Biochem Biophys. 1994;315:302-309.
Google Scholar | Crossref | Medline33. Ban, HS, Xu, X, Jang, K, et al. A novel malate dehydrogenase 2 inhibitor suppresses hypoxia-inducible factor-1 by regulating mitochondrial respiration. PLoS One. 2016;11:e0162568.
Google Scholar | Crossref | Medline34. Fukui, H, Moraes, CT. The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? Trends Neurosci. 2008;31:251-256.
Google Scholar | Crossref | Medline | ISI35. Liu, F, Shi, J, Tanimukai, H, et al. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain. 2009;132:1820-1832.
Google Scholar | Crossref | Medline36. Kester, MI, Teunissen, CE, Crimmins, DL, et al. Neurogranin as a cerebrospinal fluid biomarker for synaptic loss in symptomatic Alzheimer disease. JAMA Neurol. 2015;72:1275.
Google Scholar | Crossref | Medline37. Császár, A, Kálmán, J, Szalai, C, Janka, Z, Romics, L. Association of the apolipoprotein A-IV codon 360 mutation in patients with Alzheimer’s disease. Neurosci Lett. 1997;230:151-154.
Google Scholar | Crossref | Medline38. Elliott, DA, Weickert, CS, Garner, B. Apolipoproteins in the brain: implications for neurological and psychiatric disorders. Clin Lipidol. 2010;51:555-573.
Google Scholar | Crossref | Medline39. Wong, GT-H, Chang, RC-C, Law, AC-K. A breach in the scaffold: the possible role of cytoskeleton dysfunction in the pathogenesis of major depression. Ageing Res Rev. 2013;12:67-75.
Google Scholar | Crossref | Medline40. Brown, AS, Borgmann-Winter, K, Hahn, C-G, et al. Increased stability of microtubules in cultured olfactory neuroepithelial cells from individuals with schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;48:252-258.
Google Scholar | Crossref | Medline41. Prabakaran, S, Swatton, JE, Ryan, MM, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 2004;9:684-697.
Google Scholar | Crossref | Medline | ISI42. Xing, H, Lim, Y-A, Chong, JR, et al. Increased phosphorylation of collapsin response mediator protein-2 at Thr514 correlates with β-amyloid burden and synaptic deficits in Lewy body dementias. Mol Brain. 2016;9:84.
Google Scholar | Crossref | Medline43. Cole, AR., Noble, W, van Aalten, L, et al. Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer’s disease progression. J Neurochem. 2007;103:1132-1144.
Google Scholar | Crossref | Medline | ISI44. Drewes, G, Ebneth, A, Preuss, U, Mandelkow, EM, Mandelkow, E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell. 1997;89:297-308.
Google Scholar | Crossref | Medline45. Soetanto, A, Wilson, RS, Talbot, K, et al. Association of anxiety and depression with microtubule-associated protein 2- and synaptopodin-immunolabeled dendrite and spine densities in hippocampal CA3 of older humans. Arch Gen Psychiatry. 2010;67:448-457.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif