Biological Functions and Activities of Rice Bran as a Functional Ingredient: A Review

1. Shahbandeh, M . Total global rice consumption 2008-2019. https://www.statista.com/statistics/255977/total-global-rice-consumption/. Accessed November 22, 2019. Statista.
Google Scholar2. The Global Rice Science Partnership . Ricepedia: the global staple. http://ricepedia.org/rice-as-food/the-global-staple-rice-consumers. Accessed November 22, 2019. Consultative Group on International Agricultural Research.
Google Scholar3. Iriondo-DeHond, M, Miguel, E, Del Castillo, MD. Food byproducts as sustainable ingredients for innovative and healthy dairy foods. Nutrients. 2018;10:1358. doi:10.3390/nu10101358
Google Scholar | Crossref | Medline4. Faustino, M, Veiga, M, Sousa, P, Costa, EM, Silva, S, Pintado, M. Agro-food byproducts as a new source of natural food additives. Molecules. 2019;24:1056. doi:10.3390/molecules24061056
Google Scholar | Crossref5. Mohd Esa, N, Ling, TB. By-products of rice processing: an overview of health benefits and applications. Rice Res Open Access. 2016;4:107.
Google Scholar | Crossref6. Dhankhar, P . Rice milling. IOSRJEN. 2014;4:34-42.
Google Scholar | Crossref7. Sharif, MK, Butt, MS, Anjum, FM, Khan, SH. Rice bran: a novel functional ingredient. Crit Rev Food Sci Nutr. 2014;54:807-816.
Google Scholar | Crossref | Medline8. Rohman, A, Helmiyati, S, Penggalih, M, Setyaningrum, D. Rice in health and nutrition. Int Food Res J. 2014;21:13-24.
Google Scholar9. Terigar, BG, Balasubramanian, S, Sabliov, CM, Lima, M, Boldor, D. Soybean and rice bran oil extraction in a continuous microwave system: from laboratory- to pilot-scale. J Food Eng. 2011;104:208-217.
Google Scholar | Crossref10. Brancaccio, M, Mennitti, C, Cesaro, A, et al. Dietary thiols: a potential supporting strategy against oxidative stress in heart failure and muscular damage during sports activity. Int J Environ Res Public Health. 2020;17:9424.
Google Scholar | Crossref11. Gul, K, Yousuf, B, Singh, AK, Singh, P, Wani, AA. Rice bran: nutritional values and its emerging potential for development of functional Food—a review. Bioact Carbohydr Diet Fibre. 2015;6:24-30.
Google Scholar | Crossref12. Nagendra Prasad Mn, NP, Kr, S, Khatokar, M S. Health benefits of rice bran - a review. Nutr Food Sci. 2011;01:1-7. doi:10.4172/2155-9600.1000108
Google Scholar | Crossref13. United States Department of Agriculture . Rice bran, crude. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169713/nutrients. Accessed September 17 2020. US Department of Agriculture.
Google Scholar14. Daou, C, Zhang, H. Functional and physiological properties of total, soluble, and insoluble dietary fibres derived from defatted rice bran. J Food Sci Technol. 2014;51:3878-3885.
Google Scholar | Crossref | Medline15. Oliveira Mdos, S, Feddern, V, Kupski, L, Cipolatti, EP, Badiale-Furlong, E, de Souza-Soares, LA. Changes in lipid, fatty acids and phospholipids composition of whole rice bran after solid-state fungal fermentation. Bioresour Technol. 2011;102:8335-8338.
Google Scholar | Crossref | Medline16. Rao, RSP, Muralikrishna, G. Non-starch polysaccharide–phenolic acid complexes from native and germinated cereals and millet. Food Chem. 2004;84:527-531.
Google Scholar | Crossref17. Kalpanadevi, C, Singh, V, Subramanian, R. Influence of milling on the nutritional composition of bran from different rice varieties. J Food Sci Technol. 2018;55:2259-2269.
Google Scholar | Crossref | Medline18. Ghodrat, A, Yaghobfar, A, Ebrahimnezhad, Y, Shahryar, HA, Ghorbani, A. In vitro binding capacity of wheat and barley for Mn, Zn, Cu and fe. Int J Life Sci. 2015;9:56-60.
Google Scholar | Crossref19. Sun, S, Sun, S, Cao, X, Sun, R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol. 2016;199:49-58.
Google Scholar | Crossref | Medline20. Brigham, C . Biopolymers. In: Török, B, Dransfield, T, eds. Green Chemistry. Elsevier; 2018;753-770.
Google Scholar | Crossref21. Lovegrove, A, Edwards, CH, De Noni, I, et al. Role of polysaccharides in food, digestion, and health. Crit Rev Food Sci Nutr. 2017;57:237-253.
Google Scholar | Crossref | Medline22. Lightowler, HJ, Henry, CJ. Glycemic response of mashed potato containing high-viscocity hydroxypropylmethylcellulose. Nutr Res. 2009;29:551-557.
Google Scholar | Crossref | Medline23. Maki, KC, Davidson, MH, Witchger, MS, Dicklin, MR, Subbaiah, PV. Effects of high-fiber oat and wheat cereals on postprandial glucose and lipid responses in healthy men. Int J Vitam Nutr Res. 2007;77:347-356.
Google Scholar | Crossref | Medline24. Maki, KC, Carson, ML, Kerr Anderson, WH, et al. Lipid-altering effects of different formulations of hydroxypropylmethylcellulose. J Clin Lipidol. 2009;3:159-166.
Google Scholar | Crossref | Medline25. Izydorczyk, MS . Arabinoxylans. In: Phillips, GO, Williams, PA eds. Handbook of Hydrocolloids. Woodhead Publishing; 2009;653-692.
Google Scholar | Crossref26. Dornez, E, Gebruers, K, Delcour, JA, Courtin, CM. Grain-associated xylanases: occurrence, variability, and implications for cereal processing. Trends Food Sci Technol. 2009;20:495-510.
Google Scholar | Crossref | ISI27. Samuelsen, AB, Rieder, A, Grimmer, S, Michaelsen, TE, Knutsen, SH. Immunomodulatory activity of dietary fiber: arabinoxylan and mixed-linked beta-glucan isolated from barley show modest activities in vitro. Int J Mol Sci. 2011;12:570-587.
Google Scholar | Crossref | Medline28. Zhou, S, Liu, X, Guo, Y, Wang, Q, Peng, D, Cao, L. Comparison of the immunological activities of arabinoxylans from wheat bran with alkali and xylanase-aided extraction. Carbohydr Polym. 2010;81:784-789.
Google Scholar | Crossref29. Pérez-Martínez, A, Valentín, J, Fernández, L, et al. Arabinoxylan rice bran (MGN-3/Biobran) enhances natural killer cell-mediated cytotoxicity against neuroblastoma in vitro and in vivo. Cytotherapy. 2015;17:601-612.
Google Scholar | Crossref | Medline | ISI30. Fang, HY, Chen, YK, Chen, HH, Lin, SY, Fang, YT. Immunomodulatory effects of feruloylated oligosaccharides from rice bran. Food Chem. 2012;134:836-840.
Google Scholar | Crossref | Medline31. Hartvigsen, ML, Lærke, HN, Overgaard, A, Holst, JJ, Bach Knudsen, KE, Hermansen, K. Postprandial effects of test meals including concentrated arabinoxylan and whole grain rye in subjects with the metabolic syndrome: a randomised study. Eur J Clin Nutr. 2014;68:567-574.
Google Scholar | Crossref | Medline32. Fadel, A, Plunkett, A, Li, W, et al. Arabinoxylans from rice bran and wheat immunomodulatory potentials: a review article. Nutr Food Sci. 2018;48:97-110.
Google Scholar | Crossref33. Zhang, S, Li, W, Smith, CJ, Musa, H. Cereal-derived arabinoxylans as biological response modifiers: extraction, molecular features, and immune-stimulating properties. Crit Rev Food Sci Nutr. 2015;55:1035-1052.
Google Scholar | Crossref | Medline34. Minatel, IO, Francisqueti, FV, Corrêa, CR, Lima, GP. Antioxidant activity of γ-oryzanol: a complex network of interactions. Int J Mol Sci. 2016;17:11. doi:10.3390/ijms17081107
Google Scholar | Crossref35. Butsat, S, Siriamornpun, S. Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chem. 2010;119:606-613.
Google Scholar | Crossref36. Yu, S, Nehus, ZT, Badger, TM, Fang, N. Quantification of vitamin E and gamma-oryzanol components in rice germ and bran.. J Agric Food Chem. 2007;55:7308-7313.
Google Scholar | Crossref | Medline | ISI37. Kumar, P, Yadav, D, Kumar, P, et al. Comparative study on conventional, ultrasonication and microwave assisted extraction of γ-oryzanol from rice bran.. J Food Sci Technol. 2016;53:2047-2053.
Google Scholar | Crossref | Medline38. Rungratanawanich, W, Abate, G, Serafini, MM, et al. Characterization of the antioxidant effects of γ-oryzanol: involvement of the Nrf2 pathway. Oxid Med Cell Longev. 2018;2018:2987249.
Google Scholar | Crossref | Medline39. Masuzaki, H, Kozuka, C, Okamoto, S, Yonamine, M, Tanaka, H, Shimabukuro, M. Brown rice-specific γ-oryzanol as a promising prophylactic avenue to protect against diabetes mellitus and obesity in humans. J Diabetes Invest. 2019;10:18-25.
Google Scholar | Crossref | Medline40. Wang, O, Liu, J, Cheng, Q, et al. Effects of ferulic acid and γ-oryzanol on high-fat and high-fructose diet-induced metabolic syndrome in rats. PLoS One. 2015;10:e0118135.
Google Scholar | Medline41. Kobayashi, E, Ito, J, Shimizu, N, et al. Evaluation of γ-oryzanol accumulation and lipid metabolism in the body of mice following long-term administration of γ-oryzanol.. Nutrients. 2019;11:104. doi:10.3390/nu11010104
Google Scholar | Crossref42. Huh, JY, Son, DJ, Lee, Y, et al. 8-hydroxy-2-deoxyguanosine prevents plaque formation and inhibits vascular smooth muscle cell activation through Rac1 inactivation. Free Radic Biol Med. 2012;53:109-121.
Google Scholar | Crossref | Medline43. Ahmadifard, N, Murueta, JH, Abedian-Kenari, A, Motamedzadegan, A, Jamali, H. Comparison the effect of three commercial enzymes for enzymatic hydrolysis of two substrates (rice bran protein concentrate and soy-been protein) with SDS-PAGE. J Food Sci Technol. 2016;53:1279-1284.
Google Scholar | Crossref | Medline44. Fabian, C, Ju, YH. A review on rice bran protein: its properties and extraction methods. Crit Rev Food Sci Nutr. 2011;51:816-827.
Google Scholar | Crossref | Medline45. Han, SW, Chee, KM, Cho, SJ. Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food Chem. 2015;172:766-769.
Google Scholar | Crossref | Medline46. Sohail, M, Rakha, A, Butt, MS, Iqbal, MJ, Rashid, S. Rice bran nutraceutics: a comprehensive review. Crit Rev Food Sci Nutr. 2017;57:3771-3780.
Google Scholar | Crossref | Medline47. Liu, Y, Wang, Z, Li, H, Liang, M, Yang, L. In vitro antioxidant activity of rice protein affected by alkaline degree and gastrointestinal protease digestion. J Sci Food Agric. 2016;96:4940-4950.
Google Scholar | Crossref | Medline48. Yang, L, Chen, JH, Xu, T, Zhou, AS, Yang, HK. Rice protein improves oxidative stress by regulating glutathione metabolism and attenuating oxidative damage to lipids and proteins in rats. Life Sci. 2012;91:389-394.
Google Scholar | Crossref | Medline49. Fan, JJ, Luo, X, Dong, Z. Extraction isolation and purification of rice bran peptides. Food Sci Technol. 2008;33:169-172.
Google Scholar50. Hopps, E, Noto, D, Caimi, G, Averna, MR. A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis. 2010;20:72-77.
Google Scholar | Crossref | Medline51. Boonla, O, Kukongviriyapan, U, Pakdeechote, P, Kukongviriyapan, V, Pannangpetch, P, Thawornchinsombut, S. Peptides-derived from Thai rice bran improves endothelial function in 2K-1C renovascular hypertensive rats. Nutrients. 2015;7:5783-5799.
Google Scholar | Crossref | Medline52. Uraipong, C, Zhao, J. Rice bran protein hydrolysates exhibit strong in vitro α-amylase, β-glucosidase and ACE-inhibition activities.. J Sci Food Agric. 2016;96:1101-1110.
Google Scholar | Crossref | Medline53. Uraipong, C, Zhao, J. In vitro digestion of rice bran proteins produces peptides with potent inhibitory effects on α-glucosidase and angiotensin I converting enzyme.. J Sci Food Agric. 2018;98:758-766.
Google Scholar | Crossref | Medline54. Nie, Y, Luo, F, Wang, L, et a

留言 (0)

沒有登入
gif