Effects of Acute Ethanol Intoxication on Local Field Potentials in the Rat Lateral Septum

1.

V. H. Murthy, “Facing addiction in the United States: Surgeon general’s report on alcohol, drugs, and health,” JAMA, 317, No. 2, 133–134 (2017); https://doi.org/10.1001/jama.2016.18215

Article  PubMed  Google Scholar 

2.

G. F. Koob and N. D. Volkow, “Neurocircuitry of addiction,” Neuropsychopharmacology, 35, No. 1, 217– 238 (2010); https://doi.org/10.1038/npp.2009.110

Article  PubMed  Google Scholar 

3.

K. Deng, L. Yang, J. Xie, et al., “Whole-brain mapping of projection from mouse lateral septal nucleus,” Biol. Open, 8, No. 7, bio043554 (2019).

4.

M. F. Gárate-Pérez, A. Méndez, C. Bahamondes, et al., “Vasopressin in the lateral septum decreases conditioned place preference to amphetamine and nucleus accumbens dopamine release,” Addict. Boil., 26, No. 1, e12851 (2021); 10.1111/adb.12851

5.

G. C. Sartor and G. S. Aston-Jones, “A septal-hypothalamic pathway drives orexin neurons, which is necessary for conditioned cocaine preference,” J. Neurosci., 32, No. 13, 4623–4631 (2012); https://doi.org/10.1523/JNEUROSCI.4561-11.2012

CAS  Article  PubMed  PubMed Central  Google Scholar 

6.

G. Buzsáki, C. A. Anastassiou, and C. Koch, “The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes,” Nat. Rev. Neurosci., 13, No. 6, 407–420 (2012); https://doi.org/10.1038/nrn3241

7.

S. Katzner, I. Nauhaus, A. Benucci, et al., “Local origin of field potentials in visual cortex,” Neuron, 61, No. 1, 35–41 (2009); https://doi.org/10.1016/j.neuron.2008.11.016

CAS  Article  PubMed  PubMed Central  Google Scholar 

8.

W. J. Pan, G. J. Thompson, M. E. Magnuson, et al., “Infraslow LFP correlates to resting-state fMRI BOLD signals,” NeuroImage, 74, 288–297 (2013); 10.1016/j.neuroimage.2013.02.035

9.

D. D. Wang, C. de Hemptinne, S. Miocinovic, et al., “Subthalamic local field potentials in Parkinson’s disease and isolated dystonia: An evaluation of potential biomarkers,” Neurobiol. Dis., 89, 213–222 (2016); 10.1016/j.nbd.2016.02.015

10.

M. Chaturvedi, F. Hatz, U. Gschwandtner, et al., “Quantitative EEG (QEEG) measures differentiate Parkinson’s disease (PD) patients from healthy controls (HC),” Front. Aging Neurosci., 9, 3 (2017); 10.3389/fnagi.2017.00003

11.

F. Maestú, P. Cuesta, O. Hasan, et al., “The importance of the validation of M/EEG with current biomarkers in Alzheimer’s disease,” Front. Hum. Neurosci., 13, 17 (2019); 10.3389/fnhum.2019.00017

12.

J. Voges, U. Müller, B. Bogerts, et al., “Deep brain stimulation surgery for alcohol addiction,” World Neurosurg., 80, No. 3–4, S28.e21–S28.e31 (2013); 10.1016/j.wneu.2012.07.011

13.

V. Di Lazzaro, G. Pellegrino, F. Ranieri, et al., “Effects of repetitive TMS of the motor cortex on disease progression and on glutamate and GABA levels in ALS: A proof of principle study,” Brain Stimul., 10, No. 5, 1003–1005 (2017); https://doi.org/10.1016/j.brs.2017.05.003

Article  PubMed  Google Scholar 

14.

T. Tsurugizawa, Y. Abe, and D. Le Bihan, “Water apparent diffusion coefficient correlates with gamma oscillations of local field potentials in the rat brain nucleus accumbens following alcohol injection,” J.Cereb. Blood Flow Metab., 37, No. 9, 3193–3202 (2017); https://doi.org/10.1177/0271678X16685104

Article  PubMed  PubMed Central  Google Scholar 

15.

A. M. Henricks, E. Sullivan, L. L. Dwiel, et al., “Sex differences in the ability of corticostriatal oscillations to predict rodent alcohol consumption,” Biol. Sex Differ., 10, No. 1, 61 (2019); 10.1186/s13293-019-0276-0

16.

H. Cruces-Solis, O. Babaev, H. Ali, et al., “Altered theta/beta frequency synchrony links abnormal anxietyrelated behavior to synaptic inhibition in Neuroligin-2 knockout mice,” BioRxiv, 726190 (2019); https://doi.org/10.1101/726190

17.

K. Miyake, S. Yagi, Y. Aoki, et al., “Acute effects of ethanol on hippocampal spatial representation and offline reactivation,” Front. Cell. Neurosci., 14, 571175 (2020); 10.3389/fncel.2020.571175

18.

T. L. Doremus-Fitzwater, H. M. Buck, K. Bordner, et al., “Intoxication- and withdrawal-dependent expression of central and peripheral cytokines following initial ethanol exposure,” Alcoholism: Clin. Exp. Res., 38, No. 8, 2186–2198 (2014); https://doi.org/10.1111/acer.12481

19.

O. Karlsson and E. Roman, “Dose-dependent effects of alcohol administration on behavioral profiles in the MCSF test,” Alcohol, 50, 51–56 (2016); 10.1016/j.alcohol.2015.10.003

20.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 6th edition, Elsevier, Academic Press (2006).

Google Scholar 

21.

V. M. Moroz, O. V. Vlasenko, I. L. Rokunets, et al., “Coupled spike activity in micropopulations of motor cortex neurons in rats,” Neurophysiology, 42, No. 2, 110–117 (2010).

Article  Google Scholar 

22.

O. Chaikovska, O. Ponomarenko, O. Dovgan, et al., “Concept and realization of back-pack type system for multichannel electrophysiology in freely behaving rodents,” Informatics Control Measurement in Economy and Environmental Protection, 9, No. 4, 64–68 (2019); 10.35784/iapgos.688

23.

E. Pérez-Garci, Y. del Río-Portilla, M. A. Guevara, et al., “Paradoxical sleep is characterized by uncoupled gamma activity between frontal and perceptual cortical regions,” Sleep, 24, N. 1, 118–126 (2001); https://doi.org/10.1093/sleep/24.1.118

Article  PubMed  Google Scholar 

24.

M. A. A. van der Meer and A. D. Redish, “Low and high gamma oscillations in rat ventral striatum have distinct relationships to behavior, reward, and spiking activity on a learned spatial decision task,” Front. Integr. Neurosci., 3, 9 (2009); 10.3389/neuro.07.009.2009

25.

W. Jing, Y. Wang, et al., “EEG bands of wakeful rest, slow-wave and rapid-eye-movement sleep at different brain areas in rats,” Front. Comput. Neurosci., 10, 79 (2016); 10.3389/fncom.2016.00079

26.

P. Welch, “The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoust., 15, No. 2, 70–73 (1967).

Article  Google Scholar 

27.

M. X. Cohen, “A better way to define and describe Morlet wavelets for time-frequency analysis,” NeuroImage, 199, 81–86 (2019); 10.1016/j.neuroimage.2019.05.048

28.

Y. Zhou, A. Sheremet, Y. Qin, et al., “Methodological considerations on the use of different spectral decomposition algorithms to study hippocampal rhythms,” eNeuro, 6, No. 4, ENEURO.0142-19.2019 (2019); 10.1523/ENEURO.0142-19.2019

29.

M. X. Cohen, Analyzing Neural Time Series Data: Theory and Practice, MIT Press (2014).

Book  Google Scholar 

30.

M. C. Ng, J. Jing, and M. B. Westover, Atlas of Intensive Care Quantitative EEG, Springer (2019).

Book  Google Scholar 

31.

N. Lotfullina and R. Khazipov, “Ethanol and the developing brain: inhibition of neuronal activity and neuroapoptosis,” Neuroscientist, 24, No. 2, 130–141 (2018); https://doi.org/10.1177/1073858417712667

CAS  Article  PubMed  Google Scholar 

32.

K. P. Abrahao, M. J. Pava, and D. M. Lovinger, “Dosedependent alcohol effects on electroencephalogram: Sedation/anesthesia is qualitatively distinct from sleep,” Neuropharmacology, 164, 107913 (2020); 10.1016/j.neuropharm.2019.107913

33.

C. Kamarajan, B. Porjesz, K. A. Jones, et al., “The role of brain oscillations as functional correlates of cognitive systems: a study of frontal inhibitory control in alcoholism,” Int. J. Psychophysiol., 51, No. 2, 155–180 (2004); https://doi.org/10.1016/j.ijpsycho.2003.09.004

Article  PubMed  PubMed Central  Google Scholar 

34.

J. R. Manning, J. Jacobs, I. Fried, and M. J. Kahana, “Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans,” J. Neurosci., 29, No. 43, 13613–13620 (2009); https://doi.org/10.1523/JNEUROSCI.2041-09.2009

CAS  Article  PubMed  PubMed Central  Google Scholar 

35.

B. Porjesz and H. Begleiter, “Alcoholism and human electrophysiology,” Alcohol Res. Health, 27, No. 2, 153–160 (2003).

PubMed  PubMed Central  Google Scholar 

36.

M. Rangaswamy and B. Porjesz, “Understanding alcohol use disorders with neuroelectrophysiology,” Handb. Clin. Neurol., 125, 383–414 (2014); 10.1016/B978-0-444-62619-6.00023-9

37.

M. Rangaswamy, B. Porjesz, D. Chorlian, et al., “Theta power in the EEG of alcoholics,” Alcohol. Clin. Exp. Res., 27, No. 4, 607–615 (2003); https://doi.org/10.1097/01.ALC.0000060523.95470.8F

Article  PubMed  Google Scholar 

38.

J. R. Criado and C. L. Ehlers, “Effects of adolescent ethanol exposure on event-related oscillations (EROs) in the hippocampus of adult rats,” Behav. Brain Res., 210, No. 2, 164–170 (2010); https://doi.org/10.1016/j.bbr.2010.02.021

CAS  Article  PubMed  PubMed Central  Google Scholar 

39.

B. Givens “Low doses of ethanol impair spatial working memory and reduce hippocampal theta activity,” Alcoholism: Clin. Exp. Res., 19, No. 3, 763–767 (1995); https://doi.org/10.1111/j.1530-0277.1995.tb01580.x

40.

A. E. Campbell, P. Sumner, K. D. Singh, and S. D. Mu-thukumaraswamy, “Acute effects of alcohol on stimu-lus-induced gamma oscillations in human primary visual and motor cortices,” Neuropsychopharmacology, 39, No. 9, 2104–2113 (2014); https://doi.org/10.1038/npp.2014.58

CAS  Article  PubMed  PubMed Central  Google Scholar 

41.

C. F. Valenzuela, “Alcohol and neurotransmitter interactions,” Alcohol Health Res. World, 21, No. 2, 144–148 (1997).

CAS  PubMed  PubMed Central  Google Scholar 

42.

S. Kumar, P. Porcu, D. E. Werner, et al., “The role of GABAA receptors in the acute and chronic effects of ethanol: a decade of progress,” Psychopharmacology, 205, No. 4, 529–564 (2009); https://doi.org/10.1007/s00213-009-1562-z

CAS  Article  PubMed  PubMed Central  Google Scholar 

43.

T. J. Baumgarten, G. Oeltzschner, N. Hoogenboom, et al., “Beta peak frequencies at rest correlate with endogenous GABA+/Cr concentrations in sensorimotor cortex areas,” PloS One, 11, No. 6, e0156829 (2016); 10.1371/journal.pone.0156829

44.

B. L. Osinski, A. Kim, W. Xiao, et al., “Pharmacological manipulation of the olfactory bulb modulates beta oscillations: testing model predictions,” J. Neurophysiol., 120, No. 3, 1090–1106 (2018); https://doi.org/10.1152/jn.00090.2018

CAS  Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif