V. H. Murthy, “Facing addiction in the United States: Surgeon general’s report on alcohol, drugs, and health,” JAMA, 317, No. 2, 133–134 (2017); https://doi.org/10.1001/jama.2016.18215
2.G. F. Koob and N. D. Volkow, “Neurocircuitry of addiction,” Neuropsychopharmacology, 35, No. 1, 217– 238 (2010); https://doi.org/10.1038/npp.2009.110
3.K. Deng, L. Yang, J. Xie, et al., “Whole-brain mapping of projection from mouse lateral septal nucleus,” Biol. Open, 8, No. 7, bio043554 (2019).
4.M. F. Gárate-Pérez, A. Méndez, C. Bahamondes, et al., “Vasopressin in the lateral septum decreases conditioned place preference to amphetamine and nucleus accumbens dopamine release,” Addict. Boil., 26, No. 1, e12851 (2021); 10.1111/adb.12851
5.G. C. Sartor and G. S. Aston-Jones, “A septal-hypothalamic pathway drives orexin neurons, which is necessary for conditioned cocaine preference,” J. Neurosci., 32, No. 13, 4623–4631 (2012); https://doi.org/10.1523/JNEUROSCI.4561-11.2012
CAS Article PubMed PubMed Central Google Scholar
6.G. Buzsáki, C. A. Anastassiou, and C. Koch, “The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes,” Nat. Rev. Neurosci., 13, No. 6, 407–420 (2012); https://doi.org/10.1038/nrn3241
7.S. Katzner, I. Nauhaus, A. Benucci, et al., “Local origin of field potentials in visual cortex,” Neuron, 61, No. 1, 35–41 (2009); https://doi.org/10.1016/j.neuron.2008.11.016
CAS Article PubMed PubMed Central Google Scholar
8.W. J. Pan, G. J. Thompson, M. E. Magnuson, et al., “Infraslow LFP correlates to resting-state fMRI BOLD signals,” NeuroImage, 74, 288–297 (2013); 10.1016/j.neuroimage.2013.02.035
9.D. D. Wang, C. de Hemptinne, S. Miocinovic, et al., “Subthalamic local field potentials in Parkinson’s disease and isolated dystonia: An evaluation of potential biomarkers,” Neurobiol. Dis., 89, 213–222 (2016); 10.1016/j.nbd.2016.02.015
10.M. Chaturvedi, F. Hatz, U. Gschwandtner, et al., “Quantitative EEG (QEEG) measures differentiate Parkinson’s disease (PD) patients from healthy controls (HC),” Front. Aging Neurosci., 9, 3 (2017); 10.3389/fnagi.2017.00003
11.F. Maestú, P. Cuesta, O. Hasan, et al., “The importance of the validation of M/EEG with current biomarkers in Alzheimer’s disease,” Front. Hum. Neurosci., 13, 17 (2019); 10.3389/fnhum.2019.00017
12.J. Voges, U. Müller, B. Bogerts, et al., “Deep brain stimulation surgery for alcohol addiction,” World Neurosurg., 80, No. 3–4, S28.e21–S28.e31 (2013); 10.1016/j.wneu.2012.07.011
13.V. Di Lazzaro, G. Pellegrino, F. Ranieri, et al., “Effects of repetitive TMS of the motor cortex on disease progression and on glutamate and GABA levels in ALS: A proof of principle study,” Brain Stimul., 10, No. 5, 1003–1005 (2017); https://doi.org/10.1016/j.brs.2017.05.003
14.T. Tsurugizawa, Y. Abe, and D. Le Bihan, “Water apparent diffusion coefficient correlates with gamma oscillations of local field potentials in the rat brain nucleus accumbens following alcohol injection,” J.Cereb. Blood Flow Metab., 37, No. 9, 3193–3202 (2017); https://doi.org/10.1177/0271678X16685104
Article PubMed PubMed Central Google Scholar
15.A. M. Henricks, E. Sullivan, L. L. Dwiel, et al., “Sex differences in the ability of corticostriatal oscillations to predict rodent alcohol consumption,” Biol. Sex Differ., 10, No. 1, 61 (2019); 10.1186/s13293-019-0276-0
16.H. Cruces-Solis, O. Babaev, H. Ali, et al., “Altered theta/beta frequency synchrony links abnormal anxietyrelated behavior to synaptic inhibition in Neuroligin-2 knockout mice,” BioRxiv, 726190 (2019); https://doi.org/10.1101/726190
17.K. Miyake, S. Yagi, Y. Aoki, et al., “Acute effects of ethanol on hippocampal spatial representation and offline reactivation,” Front. Cell. Neurosci., 14, 571175 (2020); 10.3389/fncel.2020.571175
18.T. L. Doremus-Fitzwater, H. M. Buck, K. Bordner, et al., “Intoxication- and withdrawal-dependent expression of central and peripheral cytokines following initial ethanol exposure,” Alcoholism: Clin. Exp. Res., 38, No. 8, 2186–2198 (2014); https://doi.org/10.1111/acer.12481
19.O. Karlsson and E. Roman, “Dose-dependent effects of alcohol administration on behavioral profiles in the MCSF test,” Alcohol, 50, 51–56 (2016); 10.1016/j.alcohol.2015.10.003
20.G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 6th edition, Elsevier, Academic Press (2006).
21.V. M. Moroz, O. V. Vlasenko, I. L. Rokunets, et al., “Coupled spike activity in micropopulations of motor cortex neurons in rats,” Neurophysiology, 42, No. 2, 110–117 (2010).
22.O. Chaikovska, O. Ponomarenko, O. Dovgan, et al., “Concept and realization of back-pack type system for multichannel electrophysiology in freely behaving rodents,” Informatics Control Measurement in Economy and Environmental Protection, 9, No. 4, 64–68 (2019); 10.35784/iapgos.688
23.E. Pérez-Garci, Y. del Río-Portilla, M. A. Guevara, et al., “Paradoxical sleep is characterized by uncoupled gamma activity between frontal and perceptual cortical regions,” Sleep, 24, N. 1, 118–126 (2001); https://doi.org/10.1093/sleep/24.1.118
24.M. A. A. van der Meer and A. D. Redish, “Low and high gamma oscillations in rat ventral striatum have distinct relationships to behavior, reward, and spiking activity on a learned spatial decision task,” Front. Integr. Neurosci., 3, 9 (2009); 10.3389/neuro.07.009.2009
25.W. Jing, Y. Wang, et al., “EEG bands of wakeful rest, slow-wave and rapid-eye-movement sleep at different brain areas in rats,” Front. Comput. Neurosci., 10, 79 (2016); 10.3389/fncom.2016.00079
26.P. Welch, “The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoust., 15, No. 2, 70–73 (1967).
27.M. X. Cohen, “A better way to define and describe Morlet wavelets for time-frequency analysis,” NeuroImage, 199, 81–86 (2019); 10.1016/j.neuroimage.2019.05.048
28.Y. Zhou, A. Sheremet, Y. Qin, et al., “Methodological considerations on the use of different spectral decomposition algorithms to study hippocampal rhythms,” eNeuro, 6, No. 4, ENEURO.0142-19.2019 (2019); 10.1523/ENEURO.0142-19.2019
29.M. X. Cohen, Analyzing Neural Time Series Data: Theory and Practice, MIT Press (2014).
30.M. C. Ng, J. Jing, and M. B. Westover, Atlas of Intensive Care Quantitative EEG, Springer (2019).
31.N. Lotfullina and R. Khazipov, “Ethanol and the developing brain: inhibition of neuronal activity and neuroapoptosis,” Neuroscientist, 24, No. 2, 130–141 (2018); https://doi.org/10.1177/1073858417712667
CAS Article PubMed Google Scholar
32.K. P. Abrahao, M. J. Pava, and D. M. Lovinger, “Dosedependent alcohol effects on electroencephalogram: Sedation/anesthesia is qualitatively distinct from sleep,” Neuropharmacology, 164, 107913 (2020); 10.1016/j.neuropharm.2019.107913
33.C. Kamarajan, B. Porjesz, K. A. Jones, et al., “The role of brain oscillations as functional correlates of cognitive systems: a study of frontal inhibitory control in alcoholism,” Int. J. Psychophysiol., 51, No. 2, 155–180 (2004); https://doi.org/10.1016/j.ijpsycho.2003.09.004
Article PubMed PubMed Central Google Scholar
34.J. R. Manning, J. Jacobs, I. Fried, and M. J. Kahana, “Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans,” J. Neurosci., 29, No. 43, 13613–13620 (2009); https://doi.org/10.1523/JNEUROSCI.2041-09.2009
CAS Article PubMed PubMed Central Google Scholar
35.B. Porjesz and H. Begleiter, “Alcoholism and human electrophysiology,” Alcohol Res. Health, 27, No. 2, 153–160 (2003).
PubMed PubMed Central Google Scholar
36.M. Rangaswamy and B. Porjesz, “Understanding alcohol use disorders with neuroelectrophysiology,” Handb. Clin. Neurol., 125, 383–414 (2014); 10.1016/B978-0-444-62619-6.00023-9
37.M. Rangaswamy, B. Porjesz, D. Chorlian, et al., “Theta power in the EEG of alcoholics,” Alcohol. Clin. Exp. Res., 27, No. 4, 607–615 (2003); https://doi.org/10.1097/01.ALC.0000060523.95470.8F
38.J. R. Criado and C. L. Ehlers, “Effects of adolescent ethanol exposure on event-related oscillations (EROs) in the hippocampus of adult rats,” Behav. Brain Res., 210, No. 2, 164–170 (2010); https://doi.org/10.1016/j.bbr.2010.02.021
CAS Article PubMed PubMed Central Google Scholar
39.B. Givens “Low doses of ethanol impair spatial working memory and reduce hippocampal theta activity,” Alcoholism: Clin. Exp. Res., 19, No. 3, 763–767 (1995); https://doi.org/10.1111/j.1530-0277.1995.tb01580.x
40.A. E. Campbell, P. Sumner, K. D. Singh, and S. D. Mu-thukumaraswamy, “Acute effects of alcohol on stimu-lus-induced gamma oscillations in human primary visual and motor cortices,” Neuropsychopharmacology, 39, No. 9, 2104–2113 (2014); https://doi.org/10.1038/npp.2014.58
CAS Article PubMed PubMed Central Google Scholar
41.C. F. Valenzuela, “Alcohol and neurotransmitter interactions,” Alcohol Health Res. World, 21, No. 2, 144–148 (1997).
CAS PubMed PubMed Central Google Scholar
42.S. Kumar, P. Porcu, D. E. Werner, et al., “The role of GABAA receptors in the acute and chronic effects of ethanol: a decade of progress,” Psychopharmacology, 205, No. 4, 529–564 (2009); https://doi.org/10.1007/s00213-009-1562-z
CAS Article PubMed PubMed Central Google Scholar
43.T. J. Baumgarten, G. Oeltzschner, N. Hoogenboom, et al., “Beta peak frequencies at rest correlate with endogenous GABA+/Cr concentrations in sensorimotor cortex areas,” PloS One, 11, No. 6, e0156829 (2016); 10.1371/journal.pone.0156829
44.B. L. Osinski, A. Kim, W. Xiao, et al., “Pharmacological manipulation of the olfactory bulb modulates beta oscillations: testing model predictions,” J. Neurophysiol., 120, No. 3, 1090–1106 (2018); https://doi.org/10.1152/jn.00090.2018
Comments (0)