Regulatory Effects of Stevia Rebaudiana on NADPH Oxidase-Related Manifestations of Oxidative Stress in Diabetic Rats with Spinal Cord Injury

1.

R. M. Simonyan, G. M. Simonyan, and M. A. Simonyan, “Method for isolation of NADPH oxidase (Nox) isoforms from biosystems,” License of invention N2828. Intellectual ownership of the agency of RA, Yerevan (2014).

2.

N. D. Vaziri, Y. S. Lee, C. Y. Lin, et al., “NAD(P)H oxidase, superoxide dismutase, catalase, glutathione peroxidase and nitric oxide synthase expression in subacute spinal cord injury,” Brain Res., 995, No. 1, 76–83 (2004); doi: https://doi.org/10.1016/j.brainres.2003.09.056.

CAS  Article  PubMed  Google Scholar 

3.

R. E. von Leden, G. Khayrullina, K. E. Moritz, and K. R. Byrnes, “Age exacerbates microglial activation, oxidative stress, inflammatory and NOX2 gene expression, and delays functional recovery in a middleaged rodent model of spinal cord injury,” J. Neuroinflammation, 14, No. 1, 161 (2017); doi: https://doi.org/10.1186/s12974-017-0933-3.

4.

S. Bermudez, G. Khayrullina, Y. Zhao, and K. R. Byrnes, “NADPH oxidase isoform expression is temporally regulated and may contribute to microglial/macrophage polarization after spinal cord injury,” Mol. Cell. Neurosci., 77, 53–64 (2016); doi: https://doi.org/10.1016/j.mcn.2016.10.001.

CAS  Article  PubMed  PubMed Central  Google Scholar 

5.

S. J. Cooney, Y. Zhao, and K. R. Byrnes, “Characterization of the expression and inflammatory activity of NADPH oxidase after spinal cord injury,” Free Radic. Res., 48, No. 8, 929–939 (2014); doi: https://doi.org/10.3109/10715762.2014.927578.

CAS  Article  PubMed  PubMed Central  Google Scholar 

6.

K. R. Byrnes, P. M. Washington, S. M. Knoblach, et al., “Delayed inflammatory mRNA and protein expression after spinal cord injury,” J. Neuroinflammation, 8, 130 (2011); doi: https://doi.org/10.1186/1742-2094-8-130.

CAS  Article  PubMed  PubMed Central  Google Scholar 

7.

B. Zhang, W. M. Bailey, A. L. McVicar, and J. C. Gensel, “Age increases reactive oxygen species production in macrophages and potentiates oxidative damage after spinal cord injury,” Neurobiol. Aging, 47, 157–167 (2016); doi: https://doi.org/10.1016/j.neurobiolaging.2016.07.029.

CAS  Article  PubMed  PubMed Central  Google Scholar 

8.

Y. Sun, F. Gong, J. Yin, et al., “Therapeutic effect of apocynin through antioxidant activity and suppression of apoptosis and inflammation after spinal cord injury,” Exp. Ther. Med., 13, No. 3, 952–960 (2017); doi: https://doi.org/10.3892/etm.2017.4090.

CAS  Article  PubMed  PubMed Central  Google Scholar 

9.

M. Olukman, A. Önal, F. G. Celenk, et al., “Treatment with NADPH oxidase inhibitor apocynin alleviates diabetic neuropathic pain in rats,” Neural Regen. Res., 13, No. 9, 1657–1664 (2018); doi:https://doi.org/10.4103/1673-5374.232530.

Article  PubMed  PubMed Central  Google Scholar 

10.

W. C. Zhao, B. Zhang, M. J. Liao, et al., “Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord,” Neurosci. Lett., 560, 81–85 (2014); doi: https://doi.org/10.1016/j.neulet.2013.12.019.

CAS  Article  PubMed  Google Scholar 

11.

G. Khayrullina, S. Bermudez, and K. R. Byrnes, “Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury,” J. Neuroinflammation, 12, 172 (2015); doi: https://doi.org/10.1186/s12974-015-0391-8.

CAS  Article  PubMed  PubMed Central  Google Scholar 

12.

A. A. Galoyan, D. S. Sarkissian, V. A. Chavushyan, et al., “Studies of the protective effect of the hypothalamic peptide PRP-3 on spinal cord neurons at different periods after lateral hemisection,” Neurochem. J., 1, No. 2, 160–172 (2007); doi: https://doi.org/10.1134/S1819712407020092.

Article  Google Scholar 

13.

V. A. Chavushyan, K. V. Simonyan, R. M. Simonyan, et al., “Effects of Stevia on synaptic plasticity and NADPH oxidase level of CNS in conditions of metabolic disorders caused by fructose,” BMC Complement. Altern. Med., 17, No. 1, 540 (2017); doi: https://doi.org/10.1186/s12906-017-2049-9.

14.

A. S. Isoyan, K. V. Simonyan, R. M. Simonyan, et al., “Superoxide-producing lipoprotein fraction from Stevia leaves: definition of specific activity,” BMC Complement. Altern. Med., 19, No. 1, 88–94 (2019); doi: https://doi.org/10.1186/s12906-019-2500-1.

CAS  Article  PubMed  PubMed Central  Google Scholar 

15.

X. Fu, G. Liu, A. Halim, et al., “Mesenchymal stem cell migration and tissue repair,” Cells, 8, No. 8, 784 (2019); doi: https://doi.org/10.3390/cells8080784.

16.

A. Shao, Sh. Tu, J. Lu, and J. Zhang, “Crosstalk between stem cells and spinal cord injury: pathophysiology and treatment strategies,” Stem Cell. Res. Ther., 10, No. 1, 238 (2019); doi: https://doi.org/10.1186/s13287-019-1357-z.

17.

M. A. Simonyan, A. V. Karapetyan, M. A. Babayan, and R. M. Simonyan, “NADPH-containing superoxideproducing lipoprotein fraction of blood serum. Isolation, purification, brief characterization and mechanism of action,” Biokhimiya, 61, No. 5, 932–938 (1996).

CAS  Google Scholar 

18.

B. K. Chen, A. M. Knight, N. N. Madigan, et al., “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials, 32, No. 32, 8077–8086 (2011); doi: https://doi.org/10.1016/j.biomaterials.2011.07.029.

CAS  Article  PubMed  PubMed Central  Google Scholar 

19.

E. S. Rosenzweig and J. W. McDonald, “Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair,” Curr. Opin. Neurol., 17, No. 2, 121–131 (2004); doi: https://doi.org/10.1097/00019052-200404000-00007.

Article  PubMed  Google Scholar 

20.

L. Wang, M. Chopp, A. Szalad, et al., “Thymosin β4 promotes the recovery of peripheral neuropathy in type II diabetic mice,” Neurobiol. Dis., 48, No. 3, 546–555 (2012); doi: https://doi.org/10.1016/j.nbd.2012.08.002.

CAS  Article  PubMed  PubMed Central  Google Scholar 

21.

N. Lukáčová, P. Jalc, and J. Maršala, “Phospholipid composition in spinal cord regions after ischemia/ reperfusion,” Neurochem. Res., 23, No. 8, 1069–1077 (1998); doi: https://doi.org/10.1023/a:1020708102702.

Article  PubMed  Google Scholar 

22.

A. Diaz-Ruiz, C. Rios, I. Duarte, et al., “Lipid peroxidation inhibition in spinal cord injury: cyclosporin-A vs. methylprednisolone,” Neuroreport, 11, No. 8, 1765–1767 (2000); doi: https://doi.org/10.1097/00001756-200006050-00033.

CAS  Article  PubMed  Google Scholar 

23.

A. Coyoy-Salgado, J. J. Segura-Uribe, C. Guerra-Araiza, “The importance of natural antioxidants in the treatment of spinal cord injury in animal models: An overview,” Oxid. Med. Cell. Longev., 2019, ID3642491 (2019); doi: https://doi.org/10.1155/2019/3642491.

CAS  Article  Google Scholar 

24.

C. Rask-Madsen and G. L. King, “Vascular complications of diabetes: mechanisms of injury and protective factors,” Cell. Metab., 17, No. 1, 20–33 (2013); doi: https://doi.org/10.1016/j.cmet.2012.11.012.

CAS  Article  PubMed  PubMed Central  Google Scholar 

25.

Yu. A. Vladimirov and A. I. Archacov, Lipid Peroxidation in Biomembranes, Nauka, Moscow (1972).

Google Scholar 

26.

R. M. Simonyan, K. A. Galoyan, and A. R. Hachatryan, “Ferrihemoglobin induces the release of NADPH oxidase from brain-membrane tissue ex vivo: the suppression of this process by galarmin,” Neurochem. J., 7, No. 3, 221–225 (2013); doi: https://doi.org/10.1134/S1819712413030148.

CAS  Article  Google Scholar 

27.

M. S. Sirakanyan, G. R. Oksuzyan, R. M. Simonyan, et al., “Effect of Mo+6 and cadmium ions on superoxideproducing and meth-Hb-reducing activity of new isoform of cytochrome b558 from spleen cell membranes in vitro,” Biol. J. Armenia, Nos. 3-4, 185–189 (2006).

Google Scholar 

28.

Y. Shiro, Y. Isogai, H. Nakamura, and T. Iizuka, “Physiological functions and molecular structures of new types of hemoproteins,” Prog. Biotechnol., 22, 189–204 (2002); doi: https://doi.org/10.1016/S0921-0423(02)80053-3.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif