Analgesic Action of Invasive Carboxytherapy: Mechanisms and Applications

1.

D. Vardeh, R. J. Mannion, and C. J. Woolf, “Toward a mechanism-based approach to pain diagnosis,” J. Pain, 17, Suppl. 9, T50–69 (2016), doi: https://doi.org/10.1016/j.jpain.2016.03.001.

2.

C. Raver, O. Uddin, Y. Ji, et al., “An amygdalo-para-brachial pathway regulates pain perception and chronic pain,” J. Neurosci., 40, No. 17, 3424–3442 (2020), doi: https://doi.org/10.1523/JNEUROSCI.0075-20.2020.

CAS  Article  PubMed  PubMed Central  Google Scholar 

3.

O. Doody and M. E. Bailey “Understanding pain physiology and its application to person with intellectual disability,” J. Intellect. Disabil., 23, No. 1, 5–18 (2019), doi: https://doi.org/10.1177/1744629517708680.

Article  PubMed  Google Scholar 

4.

D. Reddi, N. Curran, and R. Stephens, “An introduction to pain pathways and mechanisms,” Br. J. Hosp. Med. (Lond.), 74, Suppl. 12, C188–191 (2013), doi: https://doi.org/10.12968/hmed.2013.74.sup12.c188.

5.

Y. Kohro, T. Matsuda, K. Yoshihara, et al., “Spinal astrocytes in superficial laminae gate brainstem descending control of mechanosensory hypersensitivity,” Nat. Neurosci., 23, No. 11, 1376–1387 (2020), doi: https://doi.org/10.1038/s41593-020-00713-4.

CAS  Article  PubMed  Google Scholar 

6.

N. B. Finnerup and T. S. Jensen, “Mechanisms of disease: mechanism-based classification of neuropathic pain – a critical analysis,” Nat. Clin. Pract. Neurol., 2, No. 2, 107–115 (2006), doi: https://doi.org/10.1038/ncpneuro0118.

Article  PubMed  Google Scholar 

7.

P. Świeboda, R. Filip, A. Prystupa, and M. Drozd, “Assessment of pain: types, mechanism and treatment,” Ann. Agric. Environ. Med., 20, Spec. no. 1, 2–7 (2013).

8.

S. P. Cohen and J. Mao, “Neuropathic pain: mechanisms and their clinical implications,” BMJ, 348, f7656 (2014), doi: 10.1136/bmj.f7656, Erratum in BMJ, 348, g2323 (2014).

9.

Y. S. Su, W. H. Sun, and C. C. Chen, “Molecular mechanism of inflammatory pain,” World J. Anesthesiol., 3, No. 1, 71–81 (2014), doi: https://doi.org/10.5313/wja.v3.i1.71.

Article  Google Scholar 

10.

E. A. Ramirez, C. L. Loprinzi, A. Windebank, and L. E. Ta, “Neuropathic pain: from mechanism to clinical application”: in Peripheral Neuropathy – A New Insight into the Mechanism, Evaluation and Management of a Complex Disorder (E. Souayah, ed.), doi: 10.5772/55277 (2013).

11.

Ya. I. Ashikhmin and O. M. Drapkina, “Therapy of the pain syndrome in terms of efficiency and safety,” Effekt. Farmakoter. Revmatol. Travmatol. Ortoped., No. 1, 38–43 (2011).

Google Scholar 

12.

D. S. Goldberg and S. J. McGee, “Pain as a global public health priority,” BMC Public Health., 11, 770 (2011), doi: https://doi.org/10.1186/1471-2458-11-770.

Article  PubMed  PubMed Central  Google Scholar 

13.

A. T. Davydov, A. I. Tyukavin, M. M. Antonov, et al., “Pain pathology: role and position of different methods of the pain syndrome treatment,” Obzor Klin. Farm. Lek. Ter., No. 1, 55–75 (2013).

Article  Google Scholar 

14.

A. N. Barinov, L. T. Akhmedzhanova, and K. A. Makhinov, “Pain and aging – features of the treatment of elderly patients,” Zdorov. Ukrainy, No. 1, 38–40 (2017).

15.

N. M. Shuba ans T. D. Voronova, “Pain in the lower back is an important problem for a general practicing physician,” Simeina Med., No. 1, 11–17 (2007).

16.

S. M. Drogovos, Side Effects of Drugs (Logic of Drug Safety): a Handbook, SIM, Kharkiv (2010).

Google Scholar 

17.

S. M. Drogovoz, Carboxytherapy: Mechanisms, Effects, and Applications. A Handbook, Titul. Kharkiv (2019).

Google Scholar 

18.

S. M. Drogovoz, S. Yu. Shtrygol’, M. V. Zupanets, et al., “Carboxytherapy – an alternative to traditional pharmacotherapy,” Klin. Farmakol., 20, No. 1, 12–17 (2016).

19.

S. M. Drogovoz, S. Yu. Strygol’, M. V. Zupanets, et al., “Mechanism of action of carboxytherapy,” Farmkol. Lik. Toksikol., 51, No. 6, 12–20 (2016).

20.

S. M. Drogovoz, V. I. Kabachnyi, and I. V. Kabachnaya, “Mechanisms of action and pharmacotherapeutic possibilities of carboxytherapy in diseases of the nervous system,” Ukr. Visn. Psikhonevrol., 4, No. 3, 83–86 (2016).

Google Scholar 

21.

P. N. Ainslie and J. Duffin, “Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 296, No. 5, 1473–1495 (2009), doi: https://doi.org/10.1152/ajpregu.91008.2008.

CAS  Article  Google Scholar 

22.

A. V. Kononenko, S. M. Drogovoz, Ya. O. Butko, and M. V. Zupanets, “Experimental substantiation for the use of carboxytherapy in the treatment of the pain syndrome,” Lik. Sprava, No. 4, 41–45 (2019).

23.

D. Sharan, “Myofascial pain syndrome: Diagnosis and management, Indian J. Rheumatol., 9, Suppl. 2, 22–25 (2014), doi.org/10.1016/j.injr.2014.09.013.

24.

L. T. Skaer, “Treatment recommendations for fibromyalgia,” Int. J. Pharm. Res. Rev., 5, No. 4, 19–28 (2016).

Google Scholar 

25.

A. Kh. Kogan, S. V. Grachev, and S. V. Eliseyev, Modulating Role of CO2in the Action of Reactive Oxygen Species, GEOTAR Moscow-Media, Moscow (2006).

Google Scholar 

26.

T. Hussain, B. Tan, Y. Yin, et al., “Oxidative stress and inflammation: What can polyphenols do for us?,” Oxid. Med. Cell. Longev., 22, No. 7, 756–778 (2016), doi: https://doi.org/10.1155/2016/7432797.

CAS  Article  Google Scholar 

27.

A. Veselá and J. Wilhelm, “The role of carbon dioxide in free radical reactions of the organism,” Physiol. Res., 51, No. 4, 335–339 (2002).

PubMed  Google Scholar 

28.

R. M. Uppu, Z. Z. Souadrito, and W. A. Pryor, “Acceleration of peroxynitrite oxidations by carbon dioxide,” Arch. Biochem. Biophys., 327, No. 2, 335–343 (1996), doi: https://doi.org/10.1006/abbi.1996.0131.

CAS  Article  PubMed  Google Scholar 

29.

A. H. Kogan, S. V. Grachev, and S. V. Eliseyeva, “Property of carbon dioxide to inhibit generation of the superoxide anion radical by cells and its biomedical value,” Vopr. Med. Khim., 42, No. 3, 193–202 (1996).

CAS  PubMed  Google Scholar 

30.

A. Weidinger and A. V. Kozlov, “Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction,” Biomolecules, 5, No. 2, 472–484 (2015), doi: https://doi.org/10.3390/biom5020472.

CAS  Article  PubMed  PubMed Central  Google Scholar 

31.

M. A. Lutskii, T. V. Kuksova, M. A. Smelyanets, et al., “Free radical oxidation of lipids and proteins – a unique process in the organism.” Usp. Sovrem. Estestvoznan., No. 12, 24–28 (2014).

Google Scholar 

32.

S. M. Drogovoz, S. Yu. Strygol’, A. V. Kononenko, and M. V. Zupanets, “Pharmacological substantiation of carboxytherapy (CO2 therapy),” Farmakol. Lek. Sprava, 52, No. 1, 73–78 (2017).

33.

E. L. Hall, I. D. Driver, P. L. Croal, et al., “The effect of hypercapnia on resting and stimulus induced MEG signal,” NeuroImage, 58, No. 4, 1034–1043 (2011), doi: https://doi.org/10.1016/j.neuroimage.2011.06.073.

Article  PubMed  Google Scholar 

34.

C. Brandi. L. Grimandi, G. Nisi, et al., “The role of carbon dioxide therapy in the treatment of chronic wounds,” In Vivo, 24, No. 2, 223–226 (2010).

CAS  PubMed  Google Scholar 

35.

A. G. Solovieva, V. L. Kuznetsova, S. P. Peretyagin, et al., “Role of nitric oxide in the processes of free radical oxidation,” Vestn. Ross. Voen. Med. Akad., 53, No. 1, 228–233 (2016).

Google Scholar 

36.

V. P. Chernykh, S. M. Drogovoz, I. A. Zupanets, et al., “Carboxytherapy – mode of off-label use,” Lik. Sprava, No. 5–6, 112–116 (2017).

37.

O. R. Zav’yalova, “Using of carbon dioxide in medical rehabilitation,” Med. Gidrol. Reabil., 72–83 (2011).

留言 (0)

沒有登入
gif