Y. N. Tyshchenko and E. A. Lukyanetz, “The role of beta-amyloid in the norm and at Alzheimer`s disease,” Fiziol. Zh., 66, No. 6, 88–96 (2020).
2.B. Fadeel and S. Orrenius, “Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease,” J. intern. Med., 258, No. 6, 479–517 (2005).
3.P. Kostyuk, E. Lukyanetz, and Ya. Shuba, “Molecular physiology and pharmacology of the calcium channels,” Neurophysiology, 34, Nos. 2–3, 97–101 (2002).
4.P. G. Kostyk, E. P. Kostyuk, and E. A. Lukyanetz, Intracellular Calcium Signaling – Structures and Functions, Naukova Dumka, Kyiv, 176 p. (2010).
5.P. G. Kostyk, E. Kostyuk, E. A. Lukyanetz, Calcium Ions in Brain Function – From Physiology to Pathology, Naukova Dumka, Kyiv, 152 p. (2005).
6.P. G. Kostyuk and E. A. Lukyanetz, “Intracellular calcium signaling – basic mechanisms and possible alterations,” in: Bioelectromagnetics: Current Concepts, S. N. Ayrapetyan, M. S. Markov (eds.), NATO Security through Science Series, Springer, The Netherlands, pp. 87–122 (2006).
7.P. Goldstein and G. Kroemer, “Cell death by necrosis: towards a molecular definition,” Trends Biochem. Sci., 32, No. 1, 37–43 (2007).
8.N. Festjens, T. Vanden Berghe, and P. Vandenabeele, “Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response,” Biochim. Biophys. Acta, 1757, Nos. 9–10, 1371–1387 (2006).
9.W. Wu, P. Liu, and J. Li, “Necroptosis: an emerging form of programmed cell death,” Crit. Rev. Oncol. Hematol., 82, No. 3, 249–258 (2012).
10.Z. S. Khachaturian, “Diagnosis of Alzheimer’s disease,” Arch. Neurol., 42, No. 11, 1097–1105 (1985).
11.B. D. Arbo, J. B. Hoppe, K. Rodrigues, et al., “4’-Chlorodiazepam is neuroprotective against amyloid-beta in organotypic hippocampal cultures,” J. Steroid Biochem. Mol. Biol., 171, 281–287 (2017).
12.M. Calvo-Rodriguez, E. Hernando-Perez, L. Nuñez, and C. Villalobos, “Amyloid β oligomers increase ER-mitochondria Ca2+ cross talk in young hippocampal neurons and exacerbate aging-induced intracellular Ca2+ remodeling,” Front. Cell. Neurosci., 13, 22 (2019).
13.E. V. Kravenska, V. V. Chopovska, E. N. Yavorskaya, et al., “The role of mitochondria in the development of Alzheimer’s disease,” Tavrich. Med. Biol. Bull., 15, No. 3/2, 147–149 (2012).
14.E. V. Kravenska, V. V. Ganzha, E. N. Yavorskaya, and E. A. Lukyanetz, “Effect of cyclosporin A on the viability of hippocampal cells cultured under conditions of modeling of Alzheimer’s disease,” Neurophysiology, 48, No. 4, 246–251 (2016).
15.S. Beesley, J. Olcese, C. Saunders, and E. A. Bienkiewicz, “Combinatorial treatment effects in a cell culture model of Alzheimer’s disease,” J. Alzheimers Dis., 55, No. 3, 1 155–1166 (2017).
16.S. K. Dubey, M. S. Ram, K. V. Krishna, et al., “Recent expansions on cellular models to uncover the scientific barriers towards drug development for Alzheimer’s disease,” Cell. Mol. Neurobiol., 39, No. 2, 181–209 (2019).
17.V. M. Shkryl, P. G. Kostyuk, and E. A. Lukyanetz, “Dual action of cytosolic calcium on calcium channel activity during hypoxia in hippocampal neurones,” Neuroreport, 12, No. 18, 4035–4039 (2001).
18.V. M. Shkryl, L. M. Nikolaenko, P. G. Kostyuk, and E. A. Lukyanetz, “High-threshold calcium channel activity in rat hippocampal neurones during hypoxia,” Brain Res., 833, No. 2, 319–328 (1999).
19.V. M. Shkryl, “Error correction due to background subtraction in ratiometric calcium measurements with CCD camera,” Heliyon, 6, No. 6, e04180 (2020).
20.M. S. D’Arcy, “Cell death: a review of the major forms of apoptosis, necrosis and autophagy,” Cell Biol. Int., 43, No. 6, 582–592 (2019).
21.E. Hooshmandi, M. Moosavi, H. Katinger, et al., “CEPO (carbamylated erythropoietin)-Fc protects hippocampal cells in culture against beta amyloid-induced apoptosis: considering Akt/GSK-3β and ERK signaling pathways,” Mol. Biol. Rep., 47, No. 3, 2097–2108 (2020).
22.E. Hooshmandi, R. Ghasemi, P. Iloun, and M. Moosavi, “The neuroprotective effect of agmatine against amyl-oid β-induced apoptosis in primary cultured hippocampal cells involving ERK, Akt/GSK-3β, and TNF-α,” Mol. Biol. Rep., 46, No. 1, 489–496 (2019).
23.Z. H. Ji, H. Zhao, C. Liu, and X.-Y. Yu, “In-vitro neuroprotective effect and mechanism of 2β-hydroxy-δ-cadinol against amyloid β-induced neuronal apoptosis,” Neuroreport, 31, No. 3, 245–250 (2020).
24.T. Y. Korol and O. P. Kostyuk, “Damage of calciumcapturing function of mitochondria in experimental Alzheimer’s disease,” Rep. NAS Ukraine, No. 6, 186–190 (2009).
25.Y. Kravenska, H. Nieznanska, K. Nieznanski, et al., “The monomers, oligomers, and fibrils of amyloid-β inhibit the activity of mitoBKCa channels by a membranemediated mechanism,” Biochim. Biophys. Acta (BBA) Biomembranes, 1862, No. 9,183337 (2020).
26.O. P. Kostiuk, T. Korol’, S. V. Korol’, et al., “Alteration of calcium signaling as one of the mechanisms of Alzheimer’s disease and diabetic polyneuropathy,” Fiziol. Zh., 56, No. 4, 130–138 (2010).
27.M. Ramsden, Z. Henderson, and H. A. Pearson, “Modulation of Ca2+ channel currents in primary cultures of rat cortical neurones by amyloid beta protein (1-40) is dependent on solubility status,” Brain Res., 956, No. 2, 254–261 (2002).
28.D. G. Cook, X. Li, S. D. Cherry, and A. R. Cantrell, “Presenilin 1 deficiency alters the activity of voltagegated Ca2+ channels in cultured cortical neurons,” J. Neurophysiol., 94, No. 6, 4421–4429 (2005).
29.R. M. Davidson, L. Shajenko, and T. S. Donta, “Amyloid beta-peptide (Abeta P) potentiates a nimodipinesensitive L-type barium conductance in N1E-115 neuroblastoma cells,” Brain Res., 643, Nos. 1–2, 324–327 (1994).
30.W. Y. Li, J. P. Butler, J. E. Hale, et al., “Suppression of an amyloid beta peptide-mediated calcium channel response by a secreted beta-amyloid precursor protein,” Neuroscience, 95, No. 1, 1–4 (2000).
31.H. S. Chen and S. A. Lipton, “The chemical biology of clinically tolerated NMDA receptor antagonists,” J. Neurochem., 97, No. 6, 1611–1626 (2006).
32.E. Scarpini, P. Scheltens, and H. Feldman, “Treatment of Alzheimer’s disease: current status and new perspectives,” Lancet Neurol., 2, No. 9, 539–547 (2003).
33.R. F. Cowburn, B. Wiehager, and E. Sundström, “Betaamyloid peptides enhance binding of the calcium mobilising second messengers, inositol-(1,4,5) trisphosphate and inositol-(1,3,4,5)tetrakisphosphate to their receptor sites in rat cortical membranes,” Neurosci. Lett., 191, Nos. 1–2, 31–34 (1995).
34.L. Galla, N. Redolfi, T. Pozzan, et al., “Intracellular calcium dysregulation by the Alzheimer’s disease-linked protein presenilin 2,” Int. J. Mol. Sci., 21, No. 3, 770 (2020).
35.M. Kawahara and Y. Kuroda, “Molecular mechanism of neurodegeneration induced by Alzheimer’s beta-amyloid protein: channel formation and disruption of calcium homeostasis,” Brain Res. Bull., 53, No. 4, 389–397 (2000).
36.J. I. Kourie, C. L. Henry, and P. Farrelly, “Diversity of amyloid beta protein fragment [1-40]-formed channels,” Cell. Mol. Neurobiol., 21, No. 3, 255–284 (2001).
37.T. Iu. Korol’, O. P. Kostiuk, and P. H. Kostiuk, “Effect of beta-amyloid protein on calcium channels in plasma membranes of cultured hippocampal neurons,” Fiziol. Zh., 55, No. 4, 10–16 (2009).
38.I. Žofková, “Hypercalcemia. Pathophysiological aspects,” Physiol. Res., 65, No. 1, 1–10 (2016).
39.P. G. Kostyuk, E. A. Lukyanetz, and A. S. Ter-Markosyan, “Parathyroid hormone enhances calcium current in snail neurones - Simulation of the effect by phorbol esters,” Pflügers Arch., 420, No. 2,146–152 (1992).
40.J. Zagzag, M. I. Hu, S. B. Fisher, and N. D. Perrier, “Hypercalcemia and cancer: Differential diagnosis and treatment,” CA Cancer J. Clin., 68, No. 5, 377–386 (2018).
41.N. Arispe, E. Rojas, and H. B. Pollard, “Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum,” Proc. Natl. Acad. Sci. U. S. A., 90, No. 2, 567–571 (1993).
42.K. N. Green, “Calcium in the initiation, progression and as an effector of Alzheimer’s disease pathology,” J. Cell. Mol. Med., 13, No. 9A, 2787–2799 (2009).
43.T. Y. Korol, S. V. Korol, E. P. Kostyuk, and P. G. Kostyuk, “β-amyloid-induced changes in calcium homeostasis in cultured hippocampal neurons of the rat,” Neurophysiology, 40, No. 1, 6–9 (2008).
Comments (0)