Carrot Juice Consumption Reduces High Fructose-Induced Adiposity in Rats and Body Weight and BMI in Type 2 Diabetic Subjects

1. Younossi, Z, Tacke, F, Arrese, M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019;69:2672-2682.
Google Scholar | Crossref | Medline2. Bessone, F, Razori, MV, Roma, MG. Molecular pathways of non-alcoholic fatty liver disease development and progression. Cell Mol Life Sci. 2019;76:99-128.
Google Scholar | Crossref | Medline3. Jegatheesan, P, De Bandt, JP. Fructose and NAFLD: the multifaceted aspects of fructose metabolism. Nutrients. 2017;9:E230.
Google Scholar | Crossref | Medline4. Friedman, SL, Neuschwander-Tetri, BA, Rinella, M, Sanyal, AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908-922.
Google Scholar | Crossref | Medline5. Divella, R, Mazzocca, A, Daniele, A, Sabbà, C, Paradiso, A. Obesity, nonalcoholic fatty liver disease and adipocytokines network in promotion of cancer. Int J Biol Sci. 2019;15:610-616.
Google Scholar | Crossref | Medline6. Marchisello, S, Di Pino, A, Scicali, R, Urbano, F, Piro, S, Purrello, F, Rabuazzo, AM. Pathophysio-logical, molecular and therapeutic issues of nonalcoholic fatty liver disease: an Overview. Int J Mol Sci. 2019;20:E1948.
Google Scholar | Crossref | Medline7. Schwingshackl, L, Hoffmann, G, Kalle-Uhlmann, T, Arregui, M, Buijsse, B, Boeing, H. Fruit and vegetable consumption and changes in anthropometric variables in adult populations: a systematic review and meta-analysis of prospective cohort studies. PLoS One. 2015;10:e0140846.
Google Scholar | Crossref | Medline8. Poudyal, H, Panchal, S, Brown, L. Comparison of purple carrot juice and β-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome. Br J Nutr. 2010;104:1322-1332.
Google Scholar | Crossref | Medline9. Mahesh, M, Bharathi, M, Reddy, MR, Kumar, MS, Putcha, UK, Vajreswari, A, Jeyakumar, SM. Carrot juice administration decreases liver stearoyl-CoA desaturase 1 and improves docosahexaenoic acid levels, but not steatosis in high fructose diet-fed weanling wistar rats. Prev Nutr Food Sci. 2016;21:171-180.
Google Scholar | Crossref | Medline10. Mahesh, M, Bharathi, M, Raja Gopal Reddy, M, Pappu, P, Putcha, UK, Vajreswari, A, Jeyakumar, SM. Carrot juice ingestion attenuates high fructose-induced circulatory pro-inflammatory mediators in weanling Wistar rats. J Sci Food Agric. 2017;97:1582-1591.
Google Scholar | Crossref | Medline11. Indian Council of Medical Research . Nutrient requirements and recommended dietary allowances for Indians. A report of the expert group of the Indian Council of Medical Research, India; 2010.
Google Scholar12. Green, AS, Fascetti, AJ. Meeting the vitamin A requirement: the efficacy and importance of β-carotene in animal species. Sci World J. 2016;2016:7393620.
Google Scholar | Crossref13. Jeyakumar, SM, Lopamudra, P, Padmini, S, Balakrishna, N, Giridharan, NV, Vajreswari, A. Fatty acid desaturation index correlates with body mass and adiposity indices of obesity in Wistar NIN obese mutant rat strains WNIN/Ob and WNIN/GR-Ob. Nutr Metab (Lond). 2009;6:27.
Google Scholar | Crossref | Medline14. Jeyakumar, SM, Vajreswari, A, Giridharan, NV. Chronic dietary vitamin A supplementation regulates obesity in an obese mutant WNIN/Ob rat model. Obesity (Silver Spring). 2006;14:52-59.
Google Scholar | Crossref | Medline15. Korrapati, D, Jeyakumar, SM, Putcha, UK, et al. Coconut oil consumption improves fat-free mass, plasma HDL-cholesterol and insulin sensitivity in healthy men with normal BMI compared to peanut oil. Clin Nutr. 2019;38:2889-2899.
Google Scholar | Crossref | Medline16. Reddy, MRG, Asha, GV, Manchiryala, SK, Putcha, UK, Vajreswari, A, Jeyakumar, SM. High-fat diet elevates liver docosahexaenoic acid possibly through over-expression of very long-chain fatty acid elongase 2 in C57BL/6J Mice. Int J Vitam Nutr Res. 2019;89:62-72.
Google Scholar | Crossref | Medline17. Singleton, VL, Orthofer, R, Lamuela-Raventos, RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999;299:152-178.
Google Scholar | Crossref | ISI18. Longvah, T, Ananthan, R, Bhaskarachary, K, Venkaiah, K. Indian Food Composition Tables 2017. National Institute of Nutrition; 2017.
Google Scholar19. Bui, MH. Simple determination of retinol, alpha-tocopherol and carotenoids (lutein, all-trans-lycopene, alpha- and beta-carotenes) in human plasma by isocratic liquid chromatography. J Chromatogr B Biomed Appl. 1994;654:129-133.
Google Scholar | Crossref | Medline20. Miyazaki, M, Dobrzyn, A, Man, WC, Chu, K, Sampath, H, Kim, HJ, Ntambi, JM. Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. J Biol Chem. 2004;279:25164-25171.
Google Scholar | Crossref | Medline21. Mock, K, Lateef, S, Benedito, VA, Tou, JC. High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation. J Nutr Biochem. 2017;39:32-39.
Google Scholar | Crossref | Medline22. Raja Gopal Reddy, M, Pavan Kumar, C, Mahesh, M, et al. Vitamin A deficiency suppresses high fructose-induced triglyceride synthesis and elevates resolvin D1 levels. Biochim Biophys Acta. 2016;1861:156-165.
Google Scholar | Crossref | Medline23. Chait, A, Subramanian, S. Hypertriglyceridemia: pathophysiology, role of genetics, consequences, and treatment. [Updated 2019 April 23]. In: Feingold, KR, Anawalt, B, Boyce, A, et al., eds. Endotext [Internet]. MDText.com, Inc.; 2000. https://www.ncbi.nlm.nih.gov/books/NBK326743/
Google Scholar24. Basu, D, Bornfeldt, KE. Hypertriglyceridemia and Atherosclerosis: using human research to guide mechanistic studies in animal models. Front Endocrinol (Lausanne). 2020;11:504.
Google Scholar | Crossref | Medline25. Fedders, R, Muenzner, M, Schupp, M. Retinol binding protein 4 and its membrane receptors: a metabolic perspective. Horm Mol Biol Clin Investig. 2015;22:27-37.
Google Scholar | Medline26. Brun, PJ, Yang, KJ, Lee, SA, Yuen, JJ, Blaner, WS. Retinoids: potent regulators of metabolism. Biofactors. 2013;39:151-163.
Google Scholar | Crossref | Medline27. Jeyakumar, SM, Vajreswari, A. Vitamin A as a key regulator of obesity & its associated disorders: evidences from an obese rat model. Indian J Med Res. 2015;141:275-284.
Google Scholar | Crossref | Medline28. Bonet, ML, Oliver, J, Picó, C, Felipe, F, Ribot, J, Cinti, S, Palou, A. Opposite effects of feeding a vitamin A-deficient diet and retinoic acid treatment on brown adipose tissue uncoupling protein 1 (UCP1), UCP2 and leptin expression. J Endocrinol. 2000;166:511-517.
Google Scholar | Crossref | Medline29. Menendez, C, Lage, M, Peino, R, Baldelli, R, Concheiro, P, Diéguez, C, Casanueva, FF. Retinoic acid and vitamin D(3) powerfully inhibit in vitro leptin secretion by human adipose tissue. J Endocrinol. 2001;170:425-431.
Google Scholar | Crossref | Medline30. Maffei, M, Halaas, J, Ravussin, E, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995;1:1155-1161.
Google Scholar | Crossref | Medline | ISI31. Friedman, JM. Leptin and the endocrine control of energy balance. Nat Metab. 2019;1:754-764.
Google Scholar | Crossref | Medline32. Müller, MJ, Enderle, J, Bosy-Westphal, A. Changes in energy expenditure with weight gain and weight loss in humans. Curr Obes Rep. 2016;5:413-423.
Google Scholar | Crossref | Medline33. Hussain, Z, Khan, JA. Food intake regulation by leptin: mechanisms mediating gluconeogenesis and energy expenditure. Asian Pac J Trop Med. 2017;10:940-944.
Google Scholar | Crossref | Medline34. Felipe, F, Mercader, J, Ribot, J, Palou, A, Bonet, ML. Effects of retinoic acid administration and dietary vitamin A supplementation on leptin expression in mice: lack of correlation with changes of adipose tissue mass and food intake. Biochim Biophys Acta. 2005;1740:258-265.
Google Scholar | Crossref | Medline35. Jeyakumar, SM, Vijaya Kumar, P, Giridharan, NV, Vajreswari, A. Vitamin A improves insulin sensitivity by increasing insulin receptor phosphorylation through protein tyrosine phosphatase 1B regulation at early age in obese rats of WNIN/Ob strain. Diabetes Obes Metab. 2011;13:955-958.
Google Scholar | Crossref | Medline36. Amengual, J, Gouranton, E, van Helden, YG, et al. Beta-carotene reduces body adiposity of mice via BCMO1. PLoS One. 2011;6:e20644.
Google Scholar | Crossref | Medline37. Bonet, ML, Canas, JA, Ribot, J, Palou, A. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Arch Biochem Biophys. 2015;572:112-125.
Google Scholar | Crossref | Medline38. Bonet, ML, Ribot, J, Galmés, S, Serra, F, Palou, A. Carotenoids and carotenoid conversion products in adipose tissue biology and obesity: pre-clinical and human studies. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865:158676.
Google Scholar | Crossref | Medline39. Esfahani, A, Wong, JM, Truan, J, Villa, CR, Mirrahimi, A, Srichaikul, K, Kendall, CW. Health effects of mixed fruit and vegetable concentrates: a systematic review of the clinical interventions. J Am Coll Nutr. 2011;30:285-294.
Google Scholar | Crossref | Medline | ISI40. Sharma, KD, Karki, S, Thakur, NS, Attri, S. Chemical composition, functional properties and processing of carrot-a review. J Food Sci Technol. 2012;49:22-32.
Google Scholar | Crossref | Medline41. Suzuki, K, Ito, Y, Nakamura, S, Ochiai, J, Aoki, K. Relationship between serum carotenoids and hyperglycemia: a population-based cross-sectional study. J Epidemiol. 2002;12:357-366.
Google Scholar | Crossref | Medline42. Coronel, J, Pinos, I, Amengual, J. β-carotene in obesity research: technical considerations and current status of the field. Nutrients. 2019;11:E842.
Google Scholar | Crossref | Medline43. Beydoun, MA, Chen, X, Jha, K, Beydoun, HA, Zonderman, AB, Canas, JA. Carotenoids, vitamin A, and their association with the metabolic syndrome: a systematic review and meta-analysis. Nutr Rev. 2019;77:32-45.
Google Scholar | Crossref | Medline44. Harari, A, Coster, ACF, Jenkins, A, Xu, A, Greenfield, JR, Harats, D, et al. Obesity and insulin resistance are inversely associated with serum and adipose tissue carotenoid concentrations in adults. J Nutr. 2020;150(1):38-46.
Google Scholar | Crossref | Medline45. Szczepańska, J, Barba, FJ, Skąpska, S, Marszałek, K. High pressure processing of carrot juice: effect of static and multi-pulsed pressure on the polyphenolic profile, oxidoreductases activity and colour. Food Chem. 2020;307:125549.
Google Scholar | Crossref | Medline46. Durazzo, A, Lucarini, M, Souto, EB, Cicala, C, Caiazzo, E, Izzo, AA, et al. Polyphenols: a concise overview on the chemistry, occurrence, and human health. Phytother Res. 2019;33:2221-2243.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif