1.
Gyasi, RM, Phillips, DR. Aging and the rising burden of noncommunicable diseases in Sub-Saharan Africa and other low- and middle-income countries: a call for holistic action. Gerontologist. 2020;60:806-811.
Google Scholar |
Crossref |
Medline2.
Zheng, S-Q, Huang, X-B, Xing, T-K, Ding, A-J, Wu, G-S, Luo, H-R. Chlorogenic acid extends the lifespan of Caenorhabditis elegans via insulin/IGF-1 signaling pathway. J Gerontol A Biol Sci Med Sci. 2017;72:464-472.
Google Scholar |
Medline3.
Barzilai, N, Huffman, DM, Muzumdar, RH, Bartke, A. The critical role of metabolic pathways in aging. Diabetes. 2012;61:1315-1322.
Google Scholar |
Crossref |
Medline4.
Chistiakov, DA, Sobenin, IA, Revin, VV, Orekhov, AN, Bobryshev, YV. Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int. 2014;2014:238463.
Google Scholar |
Crossref |
Medline |
ISI5.
Dillin, A, Crawford, DK, Kenyon, C. Timing requirements for insulin/IGF-1 signaling in C. elegans. Science. 2002;298:830-834.
Google Scholar6.
Hsu, AL, Murphy, CT, Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science. 2003;300:1142-1145.
Google Scholar |
Crossref |
Medline |
ISI7.
Kenyon, CJ. The genetics of ageing. Nature. 2010;464:504-512.
Google Scholar |
Crossref |
Medline |
ISI8.
van Exel, E, Eikelenboom, P, Comijs, H, Deeg, DJH, Stek, ML, Westendorp, RGJ. Insulin-like growth factor-1 and risk of late-onset Alzheimer’s disease: findings from a family study. Neurobiol Aging. 2014;35:725.e7-725.e710.
Google Scholar |
Crossref9.
Rossi, L, Mazzitelli, S, Arciello, M, Capo, CR, Rotilio, G. Benefits from dietary polyphenols for brain aging and Alzheimer’s disease. Neurochem Res. 2008;33:2390-2400.
Google Scholar |
Crossref |
Medline10.
Queen, BL, Tollefsbol, TO. Polyphenols and aging. Curr Aging Sci. 2010;3:34-42.
Google Scholar |
Crossref |
Medline11.
Grzesik, M, Naparło, K, Bartosz, G, Sadowska-Bartosz, I. Antioxidant properties of catechins: comparison with other antioxidants. Food Chem. 2018;241:480-492.
Google Scholar |
Crossref |
Medline12.
Gülçin, İ . Antioxidant properties of resveratrol: a structure–activity insight. Innov Food Sci Emerg Technol. 2010;11:210-218.
Google Scholar |
Crossref13.
Sökmen, M, Akram Khan, M. The antioxidant activity of some curcuminoids and chalcones. Inflammopharmacology. 2016;24:81-86.
Google Scholar |
Crossref |
Medline14.
Zhang, M, Swarts, SG, Yin, L, et al. Antioxidant properties of quercetin. Adv Exp Med Biol. 2011;701:283-289.
Google Scholar |
Crossref |
Medline |
ISI15.
Lee, KW, Kim, YJ, Lee, HJ, Lee, CY. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem. 2003;51:7292-7295.
Google Scholar |
Crossref |
Medline |
ISI16.
Vinson, JA, Proch, J, Bose, P, et al. Chocolate is a powerful ex vivo and in vivo antioxidant, an antiatherosclerotic agent in an animal model, and a significant contributor to antioxidants in the European and American Diets. J Agric Food Chem. 2006;54:8071-8076.
Google Scholar |
Crossref |
Medline17.
Munasinghe, M, Almotayri, A, Thomas, J, Heydarian, D, Weerasinghe, M, Jois, M. Cocoa improves age-associated health and extends lifespan in C. elegans. Nutr Healthy Aging. 2021;6:73-86.
Google Scholar |
Crossref18.
Ellam, S, Williamson, G. Cocoa and human health. Annu Rev Nutr. 2013;33:105-128.
Google Scholar |
Crossref |
Medline19.
Meneely, PM, Dahlberg, CL, Rose, JK. Working with worms: Caenorhabditis elegans as a model organism. Curr Protoc Essent Lab Tech. 2019;19:e35.
Google Scholar |
Crossref20.
Sutphin, GL, Kaeberlein, M. Measuring Caenorhabditis elegans life span on solid media. J Vis Exp. 2009;27:1152.
Google Scholar21.
Wang, X, Zhang, J, Lu, L, Zhou, L. The longevity effect of echinacoside in Caenorhabditis elegans mediated through daf-16. Biosci Biotechnol Biochem. 2015;79:1676-1683.
Google Scholar |
Crossref |
Medline22.
Zečić, A, Braeckman, BP. DAF-16/FoxO in Caenorhabditis elegans and its role in metabolic remodeling. Cells. 2020;9:109.
Google Scholar |
Crossref23.
Sun, X, Chen, W-D, Wang, Y-D. DAF-16/FOXO transcription factor in aging and longevity. Mini Review. Front Pharmacol. 2017;8:548.
Google Scholar |
Crossref |
Medline24.
Zhao, X, Lu, L, Qi, Y, Li, M, Zhou, L. Emodin extends lifespan of Caenorhabditis elegans through insulin/IGF-1 signaling pathway depending on DAF-16 and SIR-2.1. Biosci Biotechnol Biochem. 2017;81:1908-1916.
Google Scholar |
Crossref |
Medline25.
Berdichevsky, A, Viswanathan, M, Horvitz, HR, Guarente, L. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell. 2006;125:1165-1177.
Google Scholar |
Crossref |
Medline |
ISI26.
Anderson, RM, Bitterman, KJ, Wood, JG, Medvedik, O, Sinclair, DA. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature. 2003;423:181-185.
Google Scholar |
Crossref |
Medline |
ISI27.
Tullet, JMA, Green, JW, Au, C, et al. The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C. elegans by distinct mechanisms. Aging Cell. 2017;16:1191-1194.
Google Scholar |
Crossref |
Medline28.
Zhang, Y, Shao, Z, Zhai, Z, Shen, C, Powell-Coffman, JA. The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans. PLoS One. 2009;4:e6348.
Google Scholar |
Crossref |
Medline |
ISI29.
Harman, D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20:145-147.
Google Scholar |
Crossref |
Medline |
ISI30.
Linnane, AW, Marzuki, S, Ozawa, T, Tanaka, M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet. 1989;1:642-645.
Google Scholar |
Crossref |
Medline |
ISI31.
Miquel, J, Economos, AC, Fleming, J, Johnson, JE Mitochondrial role in cell aging. Exp Gerontol. 1980;15:575-591.
Google Scholar |
Crossref |
Medline |
ISI32.
Felkai, S, Ewbank, JJ, Lemieux, J, Labbé, JC, Brown, GG, Hekimi, S. CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J. 1999;18:1783-1792.
Google Scholar |
Crossref33.
Kelishadi, R, Farajian, S. The protective effects of breastfeeding on chronic non-communicable diseases in adulthood: a review of evidence. Adv Biomed Res. 2014;3:3.
Google Scholar |
Crossref |
Medline34.
He, S, Stein, AD. Early-life nutrition interventions and associated long-term cardiometabolic outcomes: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr. 2020;12:461-489.
Google Scholar |
Crossref35.
Ley, D, Desseyn, J-L, Gouyer, V, et al. Early life nutrition influences susceptibility to chronic inflammatory colitis in later life. Sci Rep. 2019;9:18111.
Google Scholar |
Crossref |
Medline36.
Zhou, X, Du, L, Shi, R, Chen, Z, Zhou, Y, Li, Z. Early-life food nutrition, microbiota maturation and immune development shape life-long health. Crit Rev Food Sci Nutr. 2019;59:S30-S38.
Google Scholar |
Crossref |
Medline37.
Zhou, L-Y, Deng, M-Q, Zhang, Q, Xiao, X-H. Early-life nutrition and metabolic disorders in later life: a new perspective on energy metabolism. Chin Med J. 2020;133:1961-1970.
Google Scholar |
Crossref |
Medline38.
Guha, S, Natarajan, O, Murbach, CG, et al. Supplement timing of cranberry extract plays a key role in promoting Caenorhabditis elegans healthspan. Nutrients. 2014;6:911-921.
Google Scholar |
Crossref |
Medline39.
Zuckerman, BM, Geist, MA. Effects of vitamin E on the nematode Caenorhabditis elegans. Age. 1983;6:1-4.
Google Scholar40.
Shaito, A, Posadino, AM, Younes, N, et al. Potential adverse effects of resveratrol: a literature review. Int J Mol Sci. 2020;21:2084.
Google Scholar |
Crossref41.
Lam, YT, Stocker, R, Dawes, IW. The lipophilic antioxidants alpha-tocopherol and coenzyme Q10 reduce the replicative lifespan of Saccharomyces cerevisiae. Free Radic Biol Med. 2010;49:237-244.
Google Scholar |
Crossref |
Medline |
ISI42.
Selman, C, McLaren, JS, Collins, AR, et al. Deleterious consequences of antioxidant supplementation on lifespan in a wild-derived mammal. Biol Lett. 2013;9:20130432.
Google Scholar |
Crossref |
Medline43.
Ristow, M, Zarse, K, Oberbach, A, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci. 2009;106:8665-8670.
Google Scholar |
Crossref |
Medline |
ISI44.
Mazzanti, G, Menniti-Ippolito, F, Moro, PA, et al. Hepatotoxicity from green tea: a review of the literature and two unpublished cases. Eur J Clin Pharmacol. 2009;65:331-341.
Google Scholar |
Crossref |
Medline |
ISI45.
Uno, M, Nishida, E. Lifespan-regulating genes in C. elegans. NPJ Aging Mech Dis. 2016;2:16010.
Google Scholar |
Crossref |
Medline46.
Curran, SP, Ruvkun, G. Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet. 2007;3:e56.
Google Scholar |
Crossref |
Medline |
ISI47.
Stein, G, Murphy, C. The intersection of aging, longevity pathways, and learning and memory in C. elegans. Review. Front Genet. 2012;3:259.
Google Scholar |
Crossref |
Medline48.
Kenyon, C, Chang, J, Gensch, E, Rudner, A, Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366:461-464.
Google Scholar |
Crossref |
Medline |
ISI49.
Viswanathan, M, Kim, SK, Berdichevsky, A, Guarente, L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell. 2005;9:605-615.
Google Scholar |
Crossref |
Medline |
ISI50.
Wang, Y, Tissenbaum, HA. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech Ageing Dev. 2006;127:48-56.
Google Scholar |
Crossref |
Medline |
ISI51.
Lenaerts, I, Walker, GA, Van Hoorebeke, L, Gems, D, Vanfleteren, JR. Dietary restriction of Caenorhabditis elegans by axenic culture reflects nutritional requirement for constituents provided by metabolically active microbes. J Gerontol A Biol Sci Med Sci. 2008;63:242-252.
Comments (0)