Sputum Transcriptomic Analysis and Clustering Reveals Insight Into Asthma Heterogeneity

Wenzel SE (2012) Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 18:716–725. https://doi.org/10.1038/nm.2678

Article  CAS  PubMed  Google Scholar 

Gauthier M, Ray A, Wenzel SE (2015) Evolving concepts of asthma. Am J Respir Crit Care Med 192:660–668. https://doi.org/10.1164/RCCM.201504-0763PP/SUPPL_FILE/DISCLOSURES.PDF

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heijink IH, Kuchibhotla VNS, Roffel MP et al (2020) Epithelial cell dysfunction, a major driver of asthma development. Allergy 75(8):1898–1913. https://doi.org/10.1111/ALL.14421

Article  Google Scholar 

Hellings PW, Steelant B (2020) Epithelial barriers in allergy and asthma. J Allergy Clin Immunol 145:1499. https://doi.org/10.1016/J.JACI.2020.04.010

Article  PubMed  PubMed Central  Google Scholar 

Kistler W, Villiger M, Villiger B et al (2024) Epithelial barrier theory in the context of nutrition and environmental exposure in athletes. Allergy. https://doi.org/10.1111/ALL.16221

Article  PubMed  Google Scholar 

Porsbjerg C, Menzies-Gow A (2017) Co-morbidities in severe asthma: Clinical impact and management. Respirology 22:651–661. https://doi.org/10.1111/RESP.13026/EPDF

Article  PubMed  Google Scholar 

Boulet LP (2009) Influence of comorbid conditions on asthma. Eur Respir J 33:897–906. https://doi.org/10.1183/09031936.00121308

Article  PubMed  Google Scholar 

Tiotiu A, Badi Y, Kermani NZ et al (2022) Association of differential mast cell activation with granulocytic inflammation in severe asthma. Am J Respir Crit Care Med 205:397–411. https://doi.org/10.1164/rccm.202102-0355OC

Article  CAS  PubMed  Google Scholar 

Takahashi K, Pavlidis S, Ng Kee Kwong F et al (2018) Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis. Eur Respir J 51:1702173. https://doi.org/10.1183/13993003.02173-2017

Article  CAS  PubMed  Google Scholar 

Pizzichini E, Pizzichini MMM, Efthimiadis A et al (1996) Measurement of inflammatory indices in induced sputum: effects of selection of sputum to minimize salivary contamination. Eur Respir J 9:1174–1180. https://doi.org/10.1183/09031936.96.09061174

Article  CAS  PubMed  Google Scholar 

Salter B, Pray C, Radford K et al (2017) Regulation of human airway smooth muscle cell migration and relevance to asthma. Respir Res. https://doi.org/10.1186/s12931-017-0640-8

Article  PubMed  PubMed Central  Google Scholar 

Singh P, Ali SA (2022) Multifunctional role of S100 protein family in the immune system: an update. Cells. https://doi.org/10.3390/cells11152274

Article  PubMed  PubMed Central  Google Scholar 

Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1(2):135–145. https://doi.org/10.1038/35100529

Article  CAS  PubMed  Google Scholar 

Su SB, Tao L, Deng ZP et al (2021) TLR10: insights, controversies and potential utility as a therapeutic target. Scand J Immunol 93:1–15. https://doi.org/10.1111/sji.12988

Article  CAS  Google Scholar 

Liu Y, Zheng J, Zhang HP et al (2018) Obesity-associated metabolic signatures correlate to clinical and inflammatory profiles of asthma: a pilot study. Allergy Asthma Immunol Res. https://doi.org/10.4168/aair.2018.10.6.628

Article  PubMed  PubMed Central  Google Scholar 

Scott HA, Gibson PG, Garg ML, Wood LG (2011) Airway inflammation is augmented by obesity and fatty acids in asthma. Eur Respir J 38:594–602. https://doi.org/10.1183/09031936.00139810

Article  CAS  PubMed  Google Scholar 

Tyagi S, Gupta P, Saini A et al (2011) The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2:236. https://doi.org/10.4103/2231-4040.90879

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birrell MA, De Alba J, Catley MC et al (2008) Liver x receptor agonists increase airway reactivity in a model of asthma via increasing airway smooth muscle growth. J Immunol 181:4265–4271. https://doi.org/10.4049/JIMMUNOL.181.6.4265

Article  CAS  PubMed  Google Scholar 

Smet M, van Hoecke L, de Beuckelaer A et al (2016) Cholesterol-sensing liver X receptors stimulate Th2-driven allergic eosinophilic asthma in mice. Immunity Inflamm Dis 4:350. https://doi.org/10.1002/IID3.118

Article  CAS  Google Scholar 

Tiwari D, Gupta P (2021) Nuclear receptors in asthma: empowering classical molecules against a contemporary ailment. Front Immunol 11:3618. https://doi.org/10.3389/FIMMU.2020.594433

Article  Google Scholar 

Von Bredow C, Hartl D, Schmid K et al (2006) Surfactant protein D regulates chemotaxis and degranulation of human eosinophils. Clin Exp Allergy 36:1566–1574. https://doi.org/10.1111/J.1365-2222.2006.02598.X

Article  Google Scholar 

Wu Y, Huang Y, Gunst SJ (2016) Focal adhesion kinase (FAK) and mechanical stimulation negatively regulate the transition of airway smooth muscle tissues to a synthetic phenotype. Am J Physiol Lung Cell Mol Physiol 311:L893–L902. https://doi.org/10.1152/ajplung.00299.2016

Article  PubMed  PubMed Central  Google Scholar 

Seys SF, Scheers H, Van den Brande P et al (2017) Cluster analysis of sputum cytokine-high profiles reveals diversity in T(h)2-high asthma patients. Respir Res 18:39. https://doi.org/10.1186/s12931-017-0524-y

Article  PubMed  PubMed Central  Google Scholar 

Seys SF, Grabowski M, Adriaensen W et al (2013) Sputum cytokine mapping reveals an ‘IL-5, IL-17A, IL-25-high’ pattern associated with poorly controlled asthma. Clin Exp Allergy 43:1009–1017. https://doi.org/10.1111/cea.12125

Article  CAS  PubMed  Google Scholar 

Yamasaki A, Okazaki R, Harada T (2022) Neutrophils and asthma. Diagnostics. https://doi.org/10.3390/DIAGNOSTICS12051175

Article  PubMed  PubMed Central  Google Scholar 

Kaplan A, Szefler SJ, Halpin DMG (2020) Impact of comorbid conditions on asthmatic adults and children. NPJ Prim Care Respir Med 30:1–10. https://doi.org/10.1038/s41533-020-00194-9

Article  Google Scholar 

Al Heialy S, Gaudet M, Ramakrishnan RK et al (2020) Contribution of IL-17 in steroid hyporesponsiveness in obese asthmatics through dysregulation of glucocorticoid receptors α and β. Front Immunol 11:1724. https://doi.org/10.3389/fimmu.2020.01724

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leija-Martínez JJ, Del-Río-Navarro BE, Sanchéz-Muñoz F et al (2021) Associations of TNFA, IL17A, and RORC mRNA expression levels in peripheral blood leukocytes with obesity-related asthma in adolescents. Clin Immunol. https://doi.org/10.1016/j.clim.2021.108715

Article  PubMed  Google Scholar 

Marijsse GS, Seys SF, Schelpe A-S et al (2014) Obese individuals with asthma preferentially have a high IL-5/IL-17A/IL-25 sputum inflammatory pattern. Am j of respir and crit care med 189(10):1286–1287. https://doi.org/10.1164/RCCM.201311-2011LE

Article  Google Scholar 

Berthon BS, Gibson PG, Wood LG et al (2017) A sputum gene expression signature predicts oral corticosteroid response in asthma. Eur Respir J 49:1700180. https://doi.org/10.1183/13993003.00180-2017

Article  CAS  PubMed  Google Scholar 

Moermans C, Schleich F, Gerday S et al (2025) The success rate and safety of induced sputum is better than you think: give it a try! ERJ Open Res 11:00871–02024.

Comments (0)

No login
gif