Siegel RL, Giaquinto AN, Jemal A, Cancer statistics. 2024. CA Cancer J Clin, 2024, 74(1): 12–49.https://doi.org/10.3322/caac.21820
Benusiglio PR, Fallet V, Sanchis-Borja M, et al. Lung cancer is also a hereditary disease. Eur Respir Rev. 2021;30(162). https://doi.org/10.1183/16000617.0045-2021.
Zhang R, Shen S, Wei Y, et al. A Large-Scale Genome-Wide Gene-Gene interaction study of lung cancer susceptibility in Europeans with a Trans-Ethnic validation in Asians. J Thorac Oncol. 2022;17(8):974–90. https://doi.org/10.1016/j.jtho.2022.04.011.
Article CAS PubMed PubMed Central Google Scholar
Kanabar SS, Tiwari A, Soran V, et al. Impact of PD1 and PDL1 immunotherapy on non-small cell lung cancer outcomes: a systematic review. Thorax. 2022;77(12):1163–74. https://doi.org/10.1136/thoraxjnl-2020-215614.
Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54. https://doi.org/10.1038/nature25183.
Article CAS PubMed Google Scholar
Ettinger DS, Wood DE, Aisner DL, et al. NCCN Guidelines® insights: Non-Small cell lung Cancer, version 2.2023. J Natl Compr Canc Netw. 2023;21(4):340–50. https://doi.org/10.6004/jnccn.2023.0020.
Article CAS PubMed Google Scholar
Lee JH, Saxena A, Giaccone G. Advancements in small cell lung cancer. Semin Cancer Biol. 2023;93:123–8. https://doi.org/10.1016/j.semcancer.2023.05.008.
Article CAS PubMed Google Scholar
Sabari JK, Lok BH, Laird JH, et al. Unravelling the biology of SCLC: implications for therapy. Nat Rev Clin Oncol. 2017;14(9):549–61. https://doi.org/10.1038/nrclinonc.2017.71.
Article CAS PubMed PubMed Central Google Scholar
Stewart CA, Gay CM, Xi Y, et al. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nat Cancer. 2020;1:423–36. https://doi.org/10.1038/s43018-019-0020-z.
Article CAS PubMed PubMed Central Google Scholar
Chan MY, Efthymios M, Tan SH, et al. Prioritizing candidates of Post-Myocardial infarction heart failure using plasma proteomics and Single-Cell transcriptomics. Circulation. 2020;142(15):1408–21. https://doi.org/10.1161/circulationaha.119.045158.
Article CAS PubMed PubMed Central Google Scholar
Davies MPA, Sato T, Ashoor H, et al. Plasma protein biomarkers for early prediction of lung cancer. EBioMedicine. 2023;93:104686. https://doi.org/10.1016/j.ebiom.2023.104686.
Article CAS PubMed PubMed Central Google Scholar
(Lc3) L C C C. The blood proteome of imminent lung cancer diagnosis. Nat Commun. 2023;14(1):3042. https://doi.org/10.1038/s41467-023-37979-8.
Larsson SC, Butterworth AS, Burgess S. Mendelian randomization for cardiovascular diseases: principles and applications. Eur Heart J. 2023;44(47):4913–24. https://doi.org/10.1093/eurheartj/ehad736.
Article PubMed PubMed Central Google Scholar
Hingorani A, Humphries S. Nature’s randomised trials. Lancet. 2005;366(9501):1906–8. https://doi.org/10.1016/s0140-6736(05)67767-7.
Emdin CA, Khera AV, Kathiresan S, Mendelian Randomization. JAMA. 2017;318(19):1925–6. https://doi.org/10.1001/jama.2017.17219.
Dasgupta S. Next-Generation cancer phenomics: A transformative approach to unraveling lung cancer complexity and advancing precision medicine. 2024, 28(12): 585–9510.1089/omi.2024.0175
Dasgupta S. Multiplexed molecular endophenotypes help identify hub genes in Non-Small cell lung cancer: unlocking Next-Generation cancer phenomics. 2025, 29(1): 8–1710.1089/omi.2024.0179
Dasgupta S. Identification and molecular modelling of potential drugs targeting the genes involved in the progression of lung cancer in patients with idiopathic pulmonary fibrosis. Gene Rep. 2024;37:102067. https://doi.org/10.1016/j.genrep.2024.102067.
Wen S, Peng W, Chen Y, et al. Four differentially expressed genes can predict prognosis and microenvironment immune infiltration in lung cancer: a study based on data from the GEO. BMC Cancer. 2022;22(1):193. https://doi.org/10.1186/s12885-022-09296-8.
Article CAS PubMed PubMed Central Google Scholar
Zhao J, Guo C, Ma Z, et al. Identification of a novel gene expression signature associated with overall survival in patients with lung adenocarcinoma: A comprehensive analysis based on TCGA and GEO databases. Lung Cancer. 2020;149:90–6. https://doi.org/10.1016/j.lungcan.2020.09.014.
Folkersen L, Gustafsson S, Wang Q, et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metab. 2020;2(10):1135–48. https://doi.org/10.1038/s42255-020-00287-2.
Article CAS PubMed PubMed Central Google Scholar
Wu Y, Wang Z, Yang Y, et al. Exploration of potential novel drug targets and biomarkers for small cell lung cancer by plasma proteome screening. Front Pharmacol. 2023;14:1266782. https://doi.org/10.3389/fphar.2023.1266782.
Article CAS PubMed PubMed Central Google Scholar
Sun J, Luo J, Jiang F, et al. Exploring the cross-cancer effect of Circulating proteins and discovering potential intervention targets for 13 site-specific cancers. J Natl Cancer Inst. 2024;116(4):565–73. https://doi.org/10.1093/jnci/djad247.
Article CAS PubMed Google Scholar
Benjamin BS, Joshua C, Matthew T, et al. Genetic regulation of the human plasma proteome in 54,306 UK biobank participants. BioRxiv (Cold Spring Harbor Laboratory). 2022. https://doi.org/10.1101/2022.06.17.496443.
Ferkingstad E, Sulem P, Atlason BA, et al. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet. 2021;53(12):1712–21. https://doi.org/10.1038/s41588-021-00978-w.
Article CAS PubMed Google Scholar
Kurki MI, Karjalainen J, Palta P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613(7944):508–18. https://doi.org/10.1038/s41586-022-05473-8.
Article CAS PubMed PubMed Central Google Scholar
Zhao J, Ming J, Hu X, et al. Bayesian weighted Mendelian randomization for causal inference based on summary statistics. Bioinformatics. 2020;36(5):1501–8. https://doi.org/10.1093/bioinformatics/btz749.
Article CAS PubMed Google Scholar
Xue H, Shen X, Pan W. Constrained maximum likelihood-based Mendelian randomization robust to both correlated and uncorrelated pleiotropic effects. Am J Hum Genet. 2021;108(7):1251–69. https://doi.org/10.1016/j.ajhg.2021.05.014.
Article CAS PubMed PubMed Central Google Scholar
Yin Q, Zhu L. Does co-localization analysis reinforce the results of Mendelian randomization? Brain. 2024;147(1):e7–8. https://doi.org/10.1093/brain/awad295.
Burgess S, Foley CN, Allara E, et al. A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nat Commun. 2020;11(1):376. https://doi.org/10.1038/s41467-019-14156-4.
Article CAS PubMed PubMed Central Google Scholar
Zhao Q, Wang J, Hemani G et al. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. 2020, Annals Stat(3): 1742–69, 1728.
Ye T, Shao J, Kang H. Debiased inverse-variance weighted estimator in two-sample summary-data Mendelian randomization. 2021, The Annals of Statistics(4): 2079–2100, 2022.
Corti A, Dominici S, Piaggi S, et al. γ-Glutamyltransferase enzyme activity of cancer cells modulates L-γ-glutamyl-p-nitroanilide (GPNA) cytotoxicity. Sci Rep. 2019;9(1):891. https://doi.org/10.1038/s41598-018-37385-x.
Comments (0)