Proteome-wide Mendelian randomization and colocalization analysis uncovers druggable targets for lung cancer across multiple phenotypes and complications

Siegel RL, Giaquinto AN, Jemal A, Cancer statistics. 2024. CA Cancer J Clin, 2024, 74(1): 12–49.https://doi.org/10.3322/caac.21820

Benusiglio PR, Fallet V, Sanchis-Borja M, et al. Lung cancer is also a hereditary disease. Eur Respir Rev. 2021;30(162). https://doi.org/10.1183/16000617.0045-2021.

Zhang R, Shen S, Wei Y, et al. A Large-Scale Genome-Wide Gene-Gene interaction study of lung cancer susceptibility in Europeans with a Trans-Ethnic validation in Asians. J Thorac Oncol. 2022;17(8):974–90. https://doi.org/10.1016/j.jtho.2022.04.011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanabar SS, Tiwari A, Soran V, et al. Impact of PD1 and PDL1 immunotherapy on non-small cell lung cancer outcomes: a systematic review. Thorax. 2022;77(12):1163–74. https://doi.org/10.1136/thoraxjnl-2020-215614.

Article  PubMed  Google Scholar 

Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54. https://doi.org/10.1038/nature25183.

Article  CAS  PubMed  Google Scholar 

Ettinger DS, Wood DE, Aisner DL, et al. NCCN Guidelines® insights: Non-Small cell lung Cancer, version 2.2023. J Natl Compr Canc Netw. 2023;21(4):340–50. https://doi.org/10.6004/jnccn.2023.0020.

Article  CAS  PubMed  Google Scholar 

Lee JH, Saxena A, Giaccone G. Advancements in small cell lung cancer. Semin Cancer Biol. 2023;93:123–8. https://doi.org/10.1016/j.semcancer.2023.05.008.

Article  CAS  PubMed  Google Scholar 

Sabari JK, Lok BH, Laird JH, et al. Unravelling the biology of SCLC: implications for therapy. Nat Rev Clin Oncol. 2017;14(9):549–61. https://doi.org/10.1038/nrclinonc.2017.71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stewart CA, Gay CM, Xi Y, et al. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nat Cancer. 2020;1:423–36. https://doi.org/10.1038/s43018-019-0020-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan MY, Efthymios M, Tan SH, et al. Prioritizing candidates of Post-Myocardial infarction heart failure using plasma proteomics and Single-Cell transcriptomics. Circulation. 2020;142(15):1408–21. https://doi.org/10.1161/circulationaha.119.045158.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davies MPA, Sato T, Ashoor H, et al. Plasma protein biomarkers for early prediction of lung cancer. EBioMedicine. 2023;93:104686. https://doi.org/10.1016/j.ebiom.2023.104686.

Article  CAS  PubMed  PubMed Central  Google Scholar 

(Lc3) L C C C. The blood proteome of imminent lung cancer diagnosis. Nat Commun. 2023;14(1):3042. https://doi.org/10.1038/s41467-023-37979-8.

Article  CAS  Google Scholar 

Larsson SC, Butterworth AS, Burgess S. Mendelian randomization for cardiovascular diseases: principles and applications. Eur Heart J. 2023;44(47):4913–24. https://doi.org/10.1093/eurheartj/ehad736.

Article  PubMed  PubMed Central  Google Scholar 

Hingorani A, Humphries S. Nature’s randomised trials. Lancet. 2005;366(9501):1906–8. https://doi.org/10.1016/s0140-6736(05)67767-7.

Article  PubMed  Google Scholar 

Emdin CA, Khera AV, Kathiresan S, Mendelian Randomization. JAMA. 2017;318(19):1925–6. https://doi.org/10.1001/jama.2017.17219.

Article  PubMed  Google Scholar 

Dasgupta S. Next-Generation cancer phenomics: A transformative approach to unraveling lung cancer complexity and advancing precision medicine. 2024, 28(12): 585–9510.1089/omi.2024.0175

Dasgupta S. Multiplexed molecular endophenotypes help identify hub genes in Non-Small cell lung cancer: unlocking Next-Generation cancer phenomics. 2025, 29(1): 8–1710.1089/omi.2024.0179

Dasgupta S. Identification and molecular modelling of potential drugs targeting the genes involved in the progression of lung cancer in patients with idiopathic pulmonary fibrosis. Gene Rep. 2024;37:102067. https://doi.org/10.1016/j.genrep.2024.102067.

Article  CAS  Google Scholar 

Wen S, Peng W, Chen Y, et al. Four differentially expressed genes can predict prognosis and microenvironment immune infiltration in lung cancer: a study based on data from the GEO. BMC Cancer. 2022;22(1):193. https://doi.org/10.1186/s12885-022-09296-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao J, Guo C, Ma Z, et al. Identification of a novel gene expression signature associated with overall survival in patients with lung adenocarcinoma: A comprehensive analysis based on TCGA and GEO databases. Lung Cancer. 2020;149:90–6. https://doi.org/10.1016/j.lungcan.2020.09.014.

Article  PubMed  Google Scholar 

Folkersen L, Gustafsson S, Wang Q, et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metab. 2020;2(10):1135–48. https://doi.org/10.1038/s42255-020-00287-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Y, Wang Z, Yang Y, et al. Exploration of potential novel drug targets and biomarkers for small cell lung cancer by plasma proteome screening. Front Pharmacol. 2023;14:1266782. https://doi.org/10.3389/fphar.2023.1266782.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun J, Luo J, Jiang F, et al. Exploring the cross-cancer effect of Circulating proteins and discovering potential intervention targets for 13 site-specific cancers. J Natl Cancer Inst. 2024;116(4):565–73. https://doi.org/10.1093/jnci/djad247.

Article  CAS  PubMed  Google Scholar 

Benjamin BS, Joshua C, Matthew T, et al. Genetic regulation of the human plasma proteome in 54,306 UK biobank participants. BioRxiv (Cold Spring Harbor Laboratory). 2022. https://doi.org/10.1101/2022.06.17.496443.

Article  Google Scholar 

Ferkingstad E, Sulem P, Atlason BA, et al. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet. 2021;53(12):1712–21. https://doi.org/10.1038/s41588-021-00978-w.

Article  CAS  PubMed  Google Scholar 

Kurki MI, Karjalainen J, Palta P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613(7944):508–18. https://doi.org/10.1038/s41586-022-05473-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao J, Ming J, Hu X, et al. Bayesian weighted Mendelian randomization for causal inference based on summary statistics. Bioinformatics. 2020;36(5):1501–8. https://doi.org/10.1093/bioinformatics/btz749.

Article  CAS  PubMed  Google Scholar 

Xue H, Shen X, Pan W. Constrained maximum likelihood-based Mendelian randomization robust to both correlated and uncorrelated pleiotropic effects. Am J Hum Genet. 2021;108(7):1251–69. https://doi.org/10.1016/j.ajhg.2021.05.014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin Q, Zhu L. Does co-localization analysis reinforce the results of Mendelian randomization? Brain. 2024;147(1):e7–8. https://doi.org/10.1093/brain/awad295.

Article  PubMed  Google Scholar 

Burgess S, Foley CN, Allara E, et al. A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nat Commun. 2020;11(1):376. https://doi.org/10.1038/s41467-019-14156-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao Q, Wang J, Hemani G et al. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. 2020, Annals Stat(3): 1742–69, 1728.

Ye T, Shao J, Kang H. Debiased inverse-variance weighted estimator in two-sample summary-data Mendelian randomization. 2021, The Annals of Statistics(4): 2079–2100, 2022.

Corti A, Dominici S, Piaggi S, et al. γ-Glutamyltransferase enzyme activity of cancer cells modulates L-γ-glutamyl-p-nitroanilide (GPNA) cytotoxicity. Sci Rep. 2019;9(1):891. https://doi.org/10.1038/s41598-018-37385-x.

Article  CAS  PubMed

Comments (0)

No login
gif