Sulforaphane: a natural organosulfur having potential to modulate apoptosis and survival signalling in cancer

Siegel RL, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

PubMed  Google Scholar 

Holohan C, et al. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–26.

Article  CAS  PubMed  Google Scholar 

Szakács G, et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219–34.

Article  PubMed  Google Scholar 

Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007;70(3):461–77.

Article  CAS  PubMed  Google Scholar 

Joshi H, et al. Genistein: a promising modulator of apoptosis and survival signaling in cancer. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(11):2893–910.

Article  CAS  PubMed  Google Scholar 

Joshi H, et al. The pharmacological implications of flavopiridol: an updated overview. Molecules. 2023;28(22):7530.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tuli HS, et al. Chemopreventive mechanisms of amentoflavone: recent trends and advancements. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(5):865–76.

Article  CAS  PubMed  Google Scholar 

Nandini D, et al. Sulforaphane in broccoli: the green chemoprevention!! Role in cancer prevention and therapy. J Oral Maxillofac Pathol JOMFP. 2020;24(2):405.

Article  CAS  PubMed  Google Scholar 

Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15:195–218.

Article  CAS  PubMed  Google Scholar 

Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493–506.

Article  CAS  PubMed  Google Scholar 

Myzak MC, et al. Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med. 2007;232(2):227–34.

CAS  Google Scholar 

Dinkova-Kostova AT, et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci. 2002;99(18):11908–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alumkal JJ, et al. A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Invest New Drugs. 2015;33:480–9.

Article  CAS  PubMed  Google Scholar 

Bose C, et al. Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model. PLoS ONE. 2018;13(3): e0193918.

Article  PubMed  PubMed Central  Google Scholar 

Bansal M, et al. Chemopreventive role of dietary phytochemicals in colorectal cancer. Adv Mol Toxicol. 2018;12:69–121.

Article  CAS  Google Scholar 

Janczewski Ł. Sulforaphane and its bifunctional analogs: Synthesis and biological activity. Molecules. 2022;27(5):1750.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vo D-V, et al. A new and effective approach to the synthesis of sulforaphane. Lett Org Chem. 2016;13(1):7–10.

Article  CAS  Google Scholar 

Wang H, et al. Pharmacokinetics and pharmacodynamics of phase II drug metabolizing/antioxidant enzymes gene response by anticancer agent sulforaphane in rat lymphocytes. Mol Pharm. 2012;9(10):2819–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pawlik A, et al. Sulforaphene, an isothiocyanate present in radish plants, inhibits proliferation of human breast cancer cells. Phytomedicine. 2017;29:1–10.

Article  CAS  PubMed  Google Scholar 

Peng F, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022;7(1):286.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mollinedo F, Gajate C. Fas/CD95 death receptor and lipid rafts: new targets for apoptosis-directed cancer therapy. Drug Resist Updates. 2006;9(1–2):51–73.

Article  CAS  Google Scholar 

Arcidiacono P, et al. Antitumor activity and expression profiles of genes induced by sulforaphane in human melanoma cells. Eur J Nutr. 2018;57:2547–69.

Article  CAS  PubMed  Google Scholar 

Bi X, et al. METTL3 promotes the initiation and metastasis of ovarian cancer by inhibiting CCNG2 expression via promoting the maturation of pri-microRNA-1246. Cell Death Discov. 2021;7(1):237.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, et al. Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway. NPJ Breast Cancer. 2022;8(1):40.

Article  PubMed  PubMed Central  Google Scholar 

Kan SF, Wang J, Sun GX. Sulforaphane regulates apoptosis-and proliferation-related signaling pathways and synergizes with cisplatin to suppress human ovarian cancer. Int J Mol Med. 2018;42(5):2447–58.

CAS  PubMed  PubMed Central  Google Scholar 

Choi S, et al. d,l-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1. Carcinogenesis. 2007;28(1):151–62.

Article  CAS  PubMed  Google Scholar 

Wang Y, et al. Sulforaphane induces S-phase arrest and apoptosis via p53-dependent manner in gastric cancer cells. Sci Rep. 2021;11(1):2504.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh AV, et al. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis. 2004;25(1):83–90.

Article  CAS  PubMed  Google Scholar 

Yamada A, et al. Dual role of Fas/FasL-mediated signal in peripheral immune tolerance. Front Immunol. 2017;8:403.

Article  PubMed  PubMed Central  Google Scholar 

Kaboli PJ, et al. Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer–contradictory effects and future perspectives. Biomed Pharmacother. 2020;121: 109635.

Article  Google Scholar 

Yu H-Y, et al. Sulforaphene suppressed cell proliferation and promoted apoptosis of COV362 cells in endometrioid ovarian cancer. PeerJ. 2023;11:e16308.

Article  PubMed  PubMed Central  Google Scholar 

Lewinska A, et al. Sulforaphane-induced cell cycle arrest and senescence are accompanied by DNA hypomethylation and changes in microRNA profile in breast cancer cells. Theranostics. 2017;7(14):3461.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pledgie-Tracy A, Sobolewski MD, Davidson NE. Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther. 2007;6(3):1013–21.

Article  CAS 

Comments (0)

No login
gif