Bone mineral density after spinal cord injury: assessment of hip and knee measurements

Naftchi NE, Viau AT, Sell GH et al (1980) Mineral metabolism in spinal cord injury. Arch Phys Med Rehabil 61:139–142

CAS  PubMed  Google Scholar 

Garland DE, Adkins RH, Kushwaha V et al (2004) Risk factors for osteoporosis at the knee in the spinal cord injury population. J Spinal Cord Med 27:202–206. https://doi.org/10.1080/10790268.2004.1175374

Article  PubMed  Google Scholar 

World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO study group. Geneva, World Health Organization, (WHO Technical Report Series, No. 843)

National Osteoporosis Foundation (NOF) (2014) Clinician’s guide to prevention and treatment of osteoporosis. Available from: www.nof.org

Shields RK, Schlechte J, Dudley-Javoroski S et al (2005) Bone mineral density after spinal cord injury: a reliable method for knee measurement. Arch Phys Med Rehabil 86:1969–1973. https://doi.org/10.1016/j.apmr.2005.06.001

Article  PubMed  PubMed Central  Google Scholar 

Garland DE, Adkins RH, Stewart CA (2008) Five-year longitudinal bone evaluations in individuals with chronic complete spinal cord injury. J Spinal Cord Med 31:543–550. https://doi.org/10.1080/10790268.2008.11753650

Article  PubMed  PubMed Central  Google Scholar 

Maimoun L, Couret I, Micallef JP et al (2002) Use of bone biochemical markers with dual-energy X-ray absorptiometry for early determination of bone loss in persons with spinal cord injury. Metabolism 51:958–963. https://doi.org/10.1053/meta.2002.34013

Article  CAS  PubMed  Google Scholar 

Biering-Soerensen F, Bohr HH, Schaadt OP (1990) Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 20:330–335. https://doi.org/10.1111/j.1365-2362.1990.tb01865.x

Article  Google Scholar 

Haider IT, Lobos SM, Simonian N et al (2018) Bone fragility after spinal cord injury: reductions in stiffness and bone mineral at the distal femur and proximal tibia as a function of time. Osteoporos Int 29:2703–2715. https://doi.org/10.1007/s00198-018-4733-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garland D, Adkins R, Stewart C (2005) Fracture threshold and risk for osteoporosis and pathologic fractures in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil 11:61–69. https://doi.org/10.1310/G6TD-HPGC-XM3Q-7YJH

Article  Google Scholar 

Troy KL, Morse LR (2015) Measurement of bone: diagnosis of SCI induced osteoporosis and fracture risk prediction. Top Spinal Cord Inj Rehabil 21:267–274. https://doi.org/10.1310/sci2104-267

Article  PubMed  PubMed Central  Google Scholar 

Zheng X, Qi Y, Zhou H et al (2021) Bone mineral density at the distal femur and proximal tibia and related factors during the first year of spinal cord injury. Int J Gen Med 26:1121–1129. https://doi.org/10.2147/IJGM.S297660

Article  Google Scholar 

Prior JC, Langsetmo L, Lentle BC et al (2015) Ten-year incident osteoporosis-related fractures in the population-based Canadian Multicentre Osteoporosis Study—comparing site and age-specific risks in women and men. Bone 71:237–243

Article  PubMed  Google Scholar 

Bethel M, Bailey L, Weaver F et al (2015) Surgical compared with nonsurgical management of fractures in male veterans with chronic spinal cord injury. Spinal Cord 53:402–407

Article  CAS  PubMed  Google Scholar 

Cirnigliaro CM, Myslinski MJ, La Fountaine MF et al (2017) Bone loss at the distal femur and proximal tibia in persons with spinal cord injury: imaging approaches, risk of fracture, and potential treatment options. Osteoporos Int 28:747–765. https://doi.org/10.1007/s00198-016-3798-x

Article  CAS  PubMed  Google Scholar 

Abdelrahman S, Ireland A, Winter EM et al (2021) Osteoporosis after spinal cord injury aetiology, effects and therapeutic approaches. J Musculoskelet Neuronal Interact 21:26–50

CAS  PubMed  PubMed Central  Google Scholar 

Cirnigliaro CM, Myslinski MJ, Asselin P et al (2019) Progressive sublesional bone loss extends into the second decade after spinal cord ınjury. J Clin Densitom 22:185–194. https://doi.org/10.1016/j.jocd.2018.10.006

Article  PubMed  Google Scholar 

Morse LR, Lazzari AA, Battaglino R et al (2009) Dual energy x-ray absorptiometry of the distal femur may be more reliable than the proximal tibia in spinal cord injury. Arch Phys Med Rehabil 90:827–831. https://doi.org/10.1016/j.apmr.2008.12.004

Article  PubMed  PubMed Central  Google Scholar 

McPherson JG, Edwards WB, Prasad A et al (2014) Dual energy X-ray absorptiometry of the knee in spinal cord injury: methodology and correlation with quantitative computed tomography. Spinal Cord 52:821–825. https://doi.org/10.1038/sc.2014.122

Article  CAS  PubMed  Google Scholar 

Morse LR, Biering-Soerensen F, Carbone LD et al (2019) Bone mineral density testing in spinal cord injury: 2019 ISCD official position. J Clin Densitom 22:554–566. https://doi.org/10.1016/j.jocd.2019.07.012

Article  PubMed  Google Scholar 

Marino RJ, Barros T, Biering-Sorensen F et al (2003) International standards for neurological classification of spinal cord injury. J Spinal Cord Med 26:S50–S56. https://doi.org/10.1080/10790268.2003.11754575

Article  PubMed  Google Scholar 

Bohannon RW, Smith MB (1987) Interrater reliability of a modified ashworth scale of muscle spasticity. Phys Ther 67:206–207. https://doi.org/10.1093/ptj/67.2.206

Article  CAS  PubMed  Google Scholar 

Washburn RA, Zhu W, McAuley E et al (2002) The physical activity scale for individuals with physical disabilities: development and evaluation. Arch Phys Med Rehabil 83:193–200. https://doi.org/10.1053/apmr.2002.27467

Article  PubMed  Google Scholar 

van den Berg-Emons RJ, L’Ortye AA, Buffart LM et al (2011) Validation of the physical activity scale for individuals with physical disabilities. Arch Phys Med Rehabil 92:923–928. https://doi.org/10.1016/j.apmr.2010.12.006

Article  PubMed  Google Scholar 

de Groot S, van der Woude LH, Niezen A et al (2010) Evaluation of the physical activity scale for individuals with physical disabilities in people with spinal cord injury. Spinal Cord 48:542–547. https://doi.org/10.1038/sc.2009.178

Article  PubMed  Google Scholar 

Ulaş K, Topuz S, Horasan G (2019) The validity and reliability of the Turkish version of the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD). Turk J Med Sci 49:1620–1625

PubMed  PubMed Central  Google Scholar 

Keith RA, Granger CV, Hamilton BB et al (1987) The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil 1:6–18

CAS  PubMed  Google Scholar 

Itzkovich M, Tamir A, Philo O et al (2003) Reliability of the Catz-Itzkovich spinal cord independence measure assessment by interview and comparison with observation. Am J Phys Med Rehabil 82:267–272. https://doi.org/10.1097/01.PHM.0000057226.22271.44

Article  PubMed  Google Scholar 

Watts NB, Leslie WD, Foldes AJ et al (2013) 2013 international society for clinical densitometry position development conference: task force on normative databases. J Clin Densitom 16:472–481. https://doi.org/10.1016/j.jocd.2013.08.001

Article  PubMed  Google Scholar 

Schousboe JT, Shepherd JA, Bilezikian JP et al (2013) Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J Clin Densitom 16:455–466. https://doi.org/10.1016/j.jocd.2013.08.004

Article  PubMed  Google Scholar 

Gaspar AP, Brandao CM, Lazaretti-Castro M (2014) Bone mass and hormone analysis in patients with spinal cord injury: evidence for a gonadal axis disruption. J Clin Endocrinol Metab 99:4649–4455. https://doi.org/10.1210/jc.2014-2165

Article  CAS  PubMed  Google Scholar 

Gaspar AP, Lazaretti-Castro M, Brandao CM (2012) Bone mineral density in spinal cord injury: an evaluation of the distal femur. J Osteoporos 2012:519754. https://doi.org/10.1155/2012/519754

Article  PubMed  PubMed Central  Google Scholar 

Garland DE, Adkins RH, Stewart CA et al (2001) Regional osteoporosis in women who have a complete spinal cord injury. J Bone Joint Surg Am 83:1195–1200. https://doi.org/10.2106/00004623-200108000-00009

Comments (0)

No login
gif