Associations between bone material strength index and FRAX scores

Pasco JA, Sanders KM, Hoekstra FM, Henry MJ, Nicholson GC, Kotowicz MA (2005) The human cost of fracture. Osteoporos Int 16:2046–2052

Article  PubMed  Google Scholar 

Oden A, McCloskey EV, Kanis JA, Harvey NC, Johansson H (2016) Burden of high fracture probability worldwide: secular increases 2010–2040. Osteoporos Int 26:2243–2248

Article  Google Scholar 

Johnell O (1997) The socioeconomic burden of fractures: today and in the 21st century. Am J Med 103:20S-25S

Article  PubMed  Google Scholar 

Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367:2010–2018

Article  PubMed  Google Scholar 

Pasco JA, Seeman E, Henry MJ, Merriman EN, Nicholson GC, Kotowicz MA (2006) The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos Int 17:1404–1409

Article  PubMed  Google Scholar 

Kanis JA, Oden A, Johnell O, Johansson H, De Laet C et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18:1033–1046

Article  PubMed  Google Scholar 

Watts NB (2011) The fracture risk assessment tool (FRAX®): applications in clinical practice. J Womens Health (Larchmt) 20:525–531

Article  PubMed  Google Scholar 

Van Den Bergh JPW, Van Geel TACM, Lems WF, Geusens PP (2010) Assessment of individual fracture risk: FRAX and beyond. Curr Osteoporos Rep 8:131–137

Article  PubMed  PubMed Central  Google Scholar 

Henry MJ, Pasco JA, Sanders KM, Nicholson GC, Kotowicz MA (2006) Fracture risk (FRISK) score: geelong osteoporosis study. Radiology 241:190–196

Article  PubMed  Google Scholar 

Zebaze RM, Ghasem-Zadeh A, Bohte A, Luliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post- mortem femurs of women: a cross-sectional study. Lancet 375:1729–1736

Article  PubMed  Google Scholar 

Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D (2009) Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom 12:170–176

Article  PubMed  Google Scholar 

Randall C, Bridges D, Guerri R, Nogues X, Puig L et al (2013) Applications of a new handheld reference point indentation instrument measuring bone material strength. J Med Device 7:410051–410056

Article  PubMed  Google Scholar 

Bridges D, Randall C, Hansma PK (2012) A new device for performing reference point indentation without a reference probe. Rev Sci Instrum 83:044301

Article  PubMed  PubMed Central  Google Scholar 

Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214

Article  PubMed  Google Scholar 

Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 12:13–16

Article  Google Scholar 

Sundh D, Rudang R, Zoulakis M, Nilsson AG, Darelid A, Lorentzon M (2016) A high amount of local adipose tissue is associated with high cortical porosity and low bone material strength in older women. J Bone Miner Res 31:749–757

Article  PubMed  Google Scholar 

Sosa DD, Eriksen EF (2017) Reduced bone material strength is associated with increased risk and severity of osteoporotic fractures. An impact microindentation study. Calcif Tissue Int 101:34–42

Article  PubMed  Google Scholar 

Malgo F, Hamdy NAT, Papapoulos SE, Appelman-Dijkstra NM (2015) Bone material strength as measured by microindentation in vivo is decreased in patients with fragility fractures independently of bone mineral density. J Clin Endocrinol Metab 100:2039–2045

Article  PubMed  Google Scholar 

Duarte Sosa D, Vilaplana L, Güerri R, Nogues X, Wang-Fagerlad M, Diez-Perez A, Eriksen E (2015) Are the high hip fracture rates among norwegian women explained by impaired bone material properties? J Bone Miner Res 30:1784–1789

Article  PubMed  Google Scholar 

Rudäng R, Zoulakis M, Sundh D, Brisby H, Diez-Perez A, Johansson L, Mellstrom D, Darelid A, Lorentzon M (2016) Bone material strength is associated with areal BMD but not with prevalent fractures in older women. Osteoporos Int 27:1585–1592

Article  PubMed  Google Scholar 

Pasco JA, Nicholson GC, Kotowicz MA (2012) Cohort profile: geelong osteoporosis study. Int J Epidemiol 41:1565–1575

Article  PubMed  Google Scholar 

Diez-Perez A, Bouxsein ML, Eriksen EF, Khosla S, Nyman JS, Papapoulos S, Tang SY (2016) Technical note: recommendations for a standard procedure to assess cortical bone at the tissue-level in vivo using impact microindentation. Bone Reports 5:181–185

Article  PubMed  PubMed Central  Google Scholar 

Holloway KL, Mohebbi M, Betson AG, Hans D, Hyde NK, Brennan-Olsen SL, Kotowicz MA, Pasco JA (2018) Prediction of major osteoporotic and hip fractures in Australian men using FRAX scores adjusted with trabecular bone score. Osteoporos Int 29:101–108

Article  PubMed  Google Scholar 

Siris ES, Baim S, Nattiv A (2010) Primary care use of FRAX®: absolute fracture risk assessment in postmenopausal women and older men. Postgrad Med 122:101–108

Article  Google Scholar 

Rufus-Membere P, Holloway-Kew KL, Diez-Perez A, Kotowicz MA, Pasco JA (2019) Associations between bone impact microindentation and clinical risk factors for fracture. Endocrinology 160:2143–2150

Article  PubMed  Google Scholar 

Malgo F, Hamdy NAT, Papapoulos SE, Appelman-Dijkstra NM (2017) Bone material strength index as measured by impact microindentation is low in patients with fractures irrespective of fracture site. Osteoporos Int 28:2433–2437

Article  PubMed  PubMed Central  Google Scholar 

Malgo F, Hamdy NAT, Rabelink TJ, Kroon HM, Claessen KM, Pereira AM, Biermasz NR, Appelman-Dijkstra NM (2017) Bone material strength index as measured by impact microindentation is altered in patients with acromegaly. Eur J Endocrinol 176:339–347

Article  PubMed  Google Scholar 

Popp KL, Caksa S, Martinez-Betancourt A, Yuan A, Tsai J, Yu WE, Bouxsein M (2019) Cortical bone material strength index and bone microarchitecture in postmenopausal women with atypical femoral fractures. J Bone Miner Res 34:75–82

Article  PubMed  Google Scholar 

Rufus-Membere P, Holloway-Kew KL, Diez-Perez A, Kotowicz MA, Pasco JA (2018) Feasibility and tolerability of bone impact microindentation testing: a cross-sectional, population-based study in Australia. BMJ Open 8:e023959

Article  PubMed  PubMed Central  Google Scholar 

Nyman JS, Roy A, Tyler JH, Acuna RL, Gayle HJ, Wang X (2007) Age-related factors affecting the postyield energy dissipation of human cortical bone. J Orthop Res 25:646–655

Article  PubMed  PubMed Central  Google Scholar 

Holloway-Kew KL, Amelia B, Rufus-Membere P, Diez-Perez A, Kotowicz MA, Pasco JA (2021) Impact microindentation in men with impaired fasting glucose and type 2 diabetes. Bone 142:115685

Article  PubMed  Google Scholar 

Dawson-Hughes B, Bouxsein M, Shea K (2019) Bone material strength in normoglycemic and hyperglycemic black and white older adults. Osteoporos Int 30:2429–2435

Article  PubMed  PubMed Central  Google Scholar 

Furst JR, Bandeira LC, Fan WW, Agarwal S, Nishiyama KK, McMahon DJ, Dworakowski E, Jiang H, Silverberg SJ, Rubin MR (2016) Advanced glycation endproducts and bone material strength in type 2 diabetes. J Clin Endocrinol Metab 101:2502–2510

Article  PubMed  PubMed Central  Google Scholar 

Nilsson AG, Sundh D, Johansson L, Nilsson M, Mellstrom D, Rudang R, Zoulakis M, Wallander M, Darelid A, Lorentzon M (2017) Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study. J Bone Miner Res 32:1062–1071

Article  PubMed  Google Scholar 

Farr JN, Drake MT, Amin S, Melton LJ, McCready LK, Khosla S (2014) In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 29:787–7

Comments (0)

No login
gif