R.S. Bahn, Graves’ ophthalmopathy. N Engl. J. Med. 362, 726–738 (2010). https://doi.org/10.1056/NEJMra0905750
Article PubMed PubMed Central CAS Google Scholar
G. Forbes, C.A. Gorman, M.D. Brennan, D.G. Gehring, D.M. Ilstrup et al., Ophthalmopathy of graves’ disease: computerized volume measurements of the orbital fat and muscle. AJNR Am. J. Neuroradiol. 7, 651–656 (1986)
PubMed PubMed Central CAS Google Scholar
L. Bartalena, E. Piantanida, D. Gallo, A. Lai, M.L. Tanda, Epidemiology, natural history, risk factors, and prevention of graves’ orbitopathy. Front. Endocrinol. (Lausanne). 11, 615993 (2020). https://doi.org/10.3389/fendo.2020.615993
D. Lacheta, P. Miskiewicz, A. Gluszko, G. Nowicka, M. Struga et al., (2019) Immunological Aspects of Graves’ Ophthalmopathy. Biomed Res Int 2019: 7453260. https://doi.org/10.1155/2019/7453260
S. Fang, Y. Lu, Y. Huang, H. Zhou, X. Fan, Mechanisms that underly T cell immunity in graves’ orbitopathy. Front. Endocrinol. (Lausanne). 12, 648732 (2021). https://doi.org/10.3389/fendo.2021.648732
S. Kumar, R.S. Bahn, Relative overexpression of macrophage-derived cytokines in orbital adipose tissue from patients with graves’ ophthalmopathy. J. Clin. Endocrinol. Metab. 88, 4246–4250 (2003). https://doi.org/10.1210/jc.2003-030380
Article PubMed CAS Google Scholar
M. Salvi, D. Covelli, B cells in graves’ orbitopathy: more than just a source of antibodies? Eye (Lond). 33, 230–234 (2019). https://doi.org/10.1038/s41433-018-0285-y
Article PubMed CAS Google Scholar
T.F. Davies, S. Andersen, R. Latif, Y. Nagayama, G. Barbesino et al., Graves’ disease. Nat. Rev. Dis. Primers. 6, 52 (2020). https://doi.org/10.1038/s41572-020-0184-y
Y. Wang, Z. Chen, T. Wang, H. Guo, Y. Liu et al., A novel CD4 + CTL subtype characterized by chemotaxis and inflammation is involved in the pathogenesis of graves’ orbitopathy. Cell. Mol. Immunol. 18, 735–745 (2021). https://doi.org/10.1038/s41423-020-00615-2
Article PubMed PubMed Central CAS Google Scholar
Z. Li, M. Wang, J. Tan, L. Zhu, P. Zeng et al., Single-cell RNA sequencing depicts the local cell landscape in thyroid-associated ophthalmopathy. Cell. Rep. Med. 3, 100699 (2022). https://doi.org/10.1016/j.xcrm.2022.100699
Article PubMed PubMed Central CAS Google Scholar
H. He, X. Qiu, M. Qi, O. Bajinka, L. Qin et al., (2022) lncRNA STAT4-AS1 Inhibited TH17 Cell Differentiation by Targeting RORgammat Protein. J Immunol Res 2022: 8307280. https://doi.org/10.1155/2022/8307280
J. Fu, H. Shi, B. Wang, T. Zhan, Y. Shao et al., LncRNA PVT1 links Myc to glycolytic metabolism upon CD4(+) T cell activation and sjogren’s syndrome-like autoimmune response. J. Autoimmun. 107, 102358 (2020). https://doi.org/10.1016/j.jaut.2019.102358
Article PubMed CAS Google Scholar
Y. Wang, M. Wang, J. Chen, Y. Li, Z. Kuang et al., The gut microbiota reprograms intestinal lipid metabolism through long noncoding RNA Snhg9. Science. 381, 851–857 (2023). https://doi.org/10.1126/science.ade0522
Article PubMed PubMed Central CAS Google Scholar
H. Xu, Y. Jiang, X. Xu, X. Su, Y. Liu et al., Inducible degradation of LncRNA Sros1 promotes IFN-gamma-mediated activation of innate immune responses by stabilizing Stat1 mRNA. Nat. Immunol. 20, 1621–1630 (2019). https://doi.org/10.1038/s41590-019-0542-7
Article PubMed CAS Google Scholar
Y.T. Tan, J.F. Lin, T. Li, J.J. Li, R.H. Xu et al., LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun. (Lond). 41, 109–120 (2021). https://doi.org/10.1002/cac2.12108
C. Li, F. Su, Z. Liang, L. Zhang, F. Liu et al., Macrophage M1 regulatory diabetic nephropathy is mediated by m6A methylation modification of LncRNA expression. Mol. Immunol. 144, 16–25 (2022). https://doi.org/10.1016/j.molimm.2022.02.008
Article PubMed CAS Google Scholar
N.T. Tran, H. Su, A. Khodadadi-Jamayran, S. Lin, L. Zhang et al., The AS-RBM15 LncRNA enhances RBM15 protein translation during megakaryocyte differentiation. EMBO Rep. 17, 887–900 (2016). https://doi.org/10.15252/embr.201541970
Article PubMed PubMed Central CAS Google Scholar
J. Martone, D. Mariani, T. Santini, A. Setti, S. Shamloo et al., SMaRT LncRNA controls translation of a G-quadruplex-containing mRNA antagonizing the DHX36 helicase. EMBO Rep. 21, e49942 (2020). https://doi.org/10.15252/embr.201949942
Article PubMed PubMed Central CAS Google Scholar
Z. Yue, P. Mou, S. Chen, F. Tong, R. Wei, A novel competing endogenous RNA network associated with the pathogenesis of graves’ ophthalmopathy. Front. Genet. 12, 795546 (2021). https://doi.org/10.3389/fgene.2021.795546
Article PubMed PubMed Central CAS Google Scholar
L. Wu, L. Li, Y. Liang, X. Chen, P. Mou et al., Identification of differentially expressed long non-coding RNAs and mRNAs in orbital adipose/connective tissue of thyroid-associated ophthalmopathy. Genomics. 113, 440–449 (2021). https://doi.org/10.1016/j.ygeno.2020.09.001
Article PubMed CAS Google Scholar
N. Wang, S.Y. Hou, X. Qi, M. Deng, J.M. Cao et al., LncRNA LPAL2/miR-1287-5p/EGFR axis modulates TED-Derived orbital fibroblast activation through cell adhesion factors. J. Clin. Endocrinol. Metab. 106, e2866–e2886 (2021). https://doi.org/10.1210/clinem/dgab256
F. Ferre, A. Colantoni, M. Helmer-Citterich, Revealing protein-lncRNA interaction. Brief. Bioinform. 17, 106–116 (2016). https://doi.org/10.1093/bib/bbv031
Article PubMed CAS Google Scholar
A. Antonelli, P. Fallahi, G. Elia, F. Ragusa, S.R. Paparo et al., Graves’ disease: clinical manifestations, immune pathogenesis (cytokines and chemokines) and therapy. Best Pract. Res. Clin. Endocrinol. Metab. 34, 101388 (2020). https://doi.org/10.1016/j.beem.2020.101388
Article PubMed CAS Google Scholar
J.J. Khong, A.A. McNab, P.R. Ebeling, J.E. Craig, D. Selva, Pathogenesis of thyroid eye disease: review and update on molecular mechanisms. Br. J. Ophthalmol. 100, 142–150 (2016). https://doi.org/10.1136/bjophthalmol-2015-307399
T.J. Smith, TSH-receptor-expressing fibrocytes and thyroid-associated ophthalmopathy. Nat. Rev. Endocrinol. 11, 171–181 (2015). https://doi.org/10.1038/nrendo.2014.226
Article PubMed PubMed Central CAS Google Scholar
J.P. Aniszewski, R.W. Valyasevi, R.S. Bahn, Relationship between disease duration and predominant orbital T cell subset in graves’ ophthalmopathy. J. Clin. Endocrinol. Metab. 85, 776–780 (2000). https://doi.org/10.1210/jcem.85.2.6333
Article PubMed CAS Google Scholar
N. Xia, S. Zhou, Y. Liang, C. Xiao, H. Shen et al., CD4 + T cells and the Th1/Th2 imbalance are implicated in the pathogenesis of graves’ ophthalmopathy. Int. J. Mol. Med. 17, 911–916 (2006)
M. Slowik, D. Urbaniak-Kujda, A. Bohdanowicz-Pawlak, K. Kapelko-Slowik, J. Dybko et al., CD8 + CD28-lymphocytes in peripheral blood and serum concentrations of soluble Interleukin 6 receptor are increased in patients with graves’ orbitopathy and correlate with disease activity. Endocr. Res. 37, 89–95 (2012). https://doi.org/10.3109/07435800.2011.635622
Article PubMed CAS Google Scholar
B. Grubeck-Loebenstein, K. Trieb, A. Sztankay, W. Holter, H. Anderl et al., Retrobulbar T cells from patients with graves’ ophthalmopathy are CD8 + and specifically recognize autologous fibroblasts. J. Clin. Investig. 93, 2738–2743 (1994)
Comments (0)