Bulk and Single-cell transcriptomic profiling identifies C1QA as an Immune-Associated hub genes in graves’ ophthalmopathy

R.S. Bahn, Graves’ ophthalmopathy. N Engl. J. Med. 362, 726–738 (2010). https://doi.org/10.1056/NEJMra0905750

Article  PubMed  PubMed Central  CAS  Google Scholar 

G. Forbes, C.A. Gorman, M.D. Brennan, D.G. Gehring, D.M. Ilstrup et al., Ophthalmopathy of graves’ disease: computerized volume measurements of the orbital fat and muscle. AJNR Am. J. Neuroradiol. 7, 651–656 (1986)

PubMed  PubMed Central  CAS  Google Scholar 

L. Bartalena, E. Piantanida, D. Gallo, A. Lai, M.L. Tanda, Epidemiology, natural history, risk factors, and prevention of graves’ orbitopathy. Front. Endocrinol. (Lausanne). 11, 615993 (2020). https://doi.org/10.3389/fendo.2020.615993

Article  PubMed  Google Scholar 

D. Lacheta, P. Miskiewicz, A. Gluszko, G. Nowicka, M. Struga et al., (2019) Immunological Aspects of Graves’ Ophthalmopathy. Biomed Res Int 2019: 7453260. https://doi.org/10.1155/2019/7453260

S. Fang, Y. Lu, Y. Huang, H. Zhou, X. Fan, Mechanisms that underly T cell immunity in graves’ orbitopathy. Front. Endocrinol. (Lausanne). 12, 648732 (2021). https://doi.org/10.3389/fendo.2021.648732

Article  PubMed  Google Scholar 

S. Kumar, R.S. Bahn, Relative overexpression of macrophage-derived cytokines in orbital adipose tissue from patients with graves’ ophthalmopathy. J. Clin. Endocrinol. Metab. 88, 4246–4250 (2003). https://doi.org/10.1210/jc.2003-030380

Article  PubMed  CAS  Google Scholar 

M. Salvi, D. Covelli, B cells in graves’ orbitopathy: more than just a source of antibodies? Eye (Lond). 33, 230–234 (2019). https://doi.org/10.1038/s41433-018-0285-y

Article  PubMed  CAS  Google Scholar 

T.F. Davies, S. Andersen, R. Latif, Y. Nagayama, G. Barbesino et al., Graves’ disease. Nat. Rev. Dis. Primers. 6, 52 (2020). https://doi.org/10.1038/s41572-020-0184-y

Article  PubMed  Google Scholar 

Y. Wang, Z. Chen, T. Wang, H. Guo, Y. Liu et al., A novel CD4 + CTL subtype characterized by chemotaxis and inflammation is involved in the pathogenesis of graves’ orbitopathy. Cell. Mol. Immunol. 18, 735–745 (2021). https://doi.org/10.1038/s41423-020-00615-2

Article  PubMed  PubMed Central  CAS  Google Scholar 

Z. Li, M. Wang, J. Tan, L. Zhu, P. Zeng et al., Single-cell RNA sequencing depicts the local cell landscape in thyroid-associated ophthalmopathy. Cell. Rep. Med. 3, 100699 (2022). https://doi.org/10.1016/j.xcrm.2022.100699

Article  PubMed  PubMed Central  CAS  Google Scholar 

H. He, X. Qiu, M. Qi, O. Bajinka, L. Qin et al., (2022) lncRNA STAT4-AS1 Inhibited TH17 Cell Differentiation by Targeting RORgammat Protein. J Immunol Res 2022: 8307280. https://doi.org/10.1155/2022/8307280

J. Fu, H. Shi, B. Wang, T. Zhan, Y. Shao et al., LncRNA PVT1 links Myc to glycolytic metabolism upon CD4(+) T cell activation and sjogren’s syndrome-like autoimmune response. J. Autoimmun. 107, 102358 (2020). https://doi.org/10.1016/j.jaut.2019.102358

Article  PubMed  CAS  Google Scholar 

Y. Wang, M. Wang, J. Chen, Y. Li, Z. Kuang et al., The gut microbiota reprograms intestinal lipid metabolism through long noncoding RNA Snhg9. Science. 381, 851–857 (2023). https://doi.org/10.1126/science.ade0522

Article  PubMed  PubMed Central  CAS  Google Scholar 

H. Xu, Y. Jiang, X. Xu, X. Su, Y. Liu et al., Inducible degradation of LncRNA Sros1 promotes IFN-gamma-mediated activation of innate immune responses by stabilizing Stat1 mRNA. Nat. Immunol. 20, 1621–1630 (2019). https://doi.org/10.1038/s41590-019-0542-7

Article  PubMed  CAS  Google Scholar 

Y.T. Tan, J.F. Lin, T. Li, J.J. Li, R.H. Xu et al., LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun. (Lond). 41, 109–120 (2021). https://doi.org/10.1002/cac2.12108

Article  PubMed  Google Scholar 

C. Li, F. Su, Z. Liang, L. Zhang, F. Liu et al., Macrophage M1 regulatory diabetic nephropathy is mediated by m6A methylation modification of LncRNA expression. Mol. Immunol. 144, 16–25 (2022). https://doi.org/10.1016/j.molimm.2022.02.008

Article  PubMed  CAS  Google Scholar 

N.T. Tran, H. Su, A. Khodadadi-Jamayran, S. Lin, L. Zhang et al., The AS-RBM15 LncRNA enhances RBM15 protein translation during megakaryocyte differentiation. EMBO Rep. 17, 887–900 (2016). https://doi.org/10.15252/embr.201541970

Article  PubMed  PubMed Central  CAS  Google Scholar 

J. Martone, D. Mariani, T. Santini, A. Setti, S. Shamloo et al., SMaRT LncRNA controls translation of a G-quadruplex-containing mRNA antagonizing the DHX36 helicase. EMBO Rep. 21, e49942 (2020). https://doi.org/10.15252/embr.201949942

Article  PubMed  PubMed Central  CAS  Google Scholar 

Z. Yue, P. Mou, S. Chen, F. Tong, R. Wei, A novel competing endogenous RNA network associated with the pathogenesis of graves’ ophthalmopathy. Front. Genet. 12, 795546 (2021). https://doi.org/10.3389/fgene.2021.795546

Article  PubMed  PubMed Central  CAS  Google Scholar 

L. Wu, L. Li, Y. Liang, X. Chen, P. Mou et al., Identification of differentially expressed long non-coding RNAs and mRNAs in orbital adipose/connective tissue of thyroid-associated ophthalmopathy. Genomics. 113, 440–449 (2021). https://doi.org/10.1016/j.ygeno.2020.09.001

Article  PubMed  CAS  Google Scholar 

N. Wang, S.Y. Hou, X. Qi, M. Deng, J.M. Cao et al., LncRNA LPAL2/miR-1287-5p/EGFR axis modulates TED-Derived orbital fibroblast activation through cell adhesion factors. J. Clin. Endocrinol. Metab. 106, e2866–e2886 (2021). https://doi.org/10.1210/clinem/dgab256

Article  PubMed  Google Scholar 

F. Ferre, A. Colantoni, M. Helmer-Citterich, Revealing protein-lncRNA interaction. Brief. Bioinform. 17, 106–116 (2016). https://doi.org/10.1093/bib/bbv031

Article  PubMed  CAS  Google Scholar 

A. Antonelli, P. Fallahi, G. Elia, F. Ragusa, S.R. Paparo et al., Graves’ disease: clinical manifestations, immune pathogenesis (cytokines and chemokines) and therapy. Best Pract. Res. Clin. Endocrinol. Metab. 34, 101388 (2020). https://doi.org/10.1016/j.beem.2020.101388

Article  PubMed  CAS  Google Scholar 

J.J. Khong, A.A. McNab, P.R. Ebeling, J.E. Craig, D. Selva, Pathogenesis of thyroid eye disease: review and update on molecular mechanisms. Br. J. Ophthalmol. 100, 142–150 (2016). https://doi.org/10.1136/bjophthalmol-2015-307399

Article  PubMed  Google Scholar 

T.J. Smith, TSH-receptor-expressing fibrocytes and thyroid-associated ophthalmopathy. Nat. Rev. Endocrinol. 11, 171–181 (2015). https://doi.org/10.1038/nrendo.2014.226

Article  PubMed  PubMed Central  CAS  Google Scholar 

J.P. Aniszewski, R.W. Valyasevi, R.S. Bahn, Relationship between disease duration and predominant orbital T cell subset in graves’ ophthalmopathy. J. Clin. Endocrinol. Metab. 85, 776–780 (2000). https://doi.org/10.1210/jcem.85.2.6333

Article  PubMed  CAS  Google Scholar 

N. Xia, S. Zhou, Y. Liang, C. Xiao, H. Shen et al., CD4 + T cells and the Th1/Th2 imbalance are implicated in the pathogenesis of graves’ ophthalmopathy. Int. J. Mol. Med. 17, 911–916 (2006)

PubMed  Google Scholar 

M. Slowik, D. Urbaniak-Kujda, A. Bohdanowicz-Pawlak, K. Kapelko-Slowik, J. Dybko et al., CD8 + CD28-lymphocytes in peripheral blood and serum concentrations of soluble Interleukin 6 receptor are increased in patients with graves’ orbitopathy and correlate with disease activity. Endocr. Res. 37, 89–95 (2012). https://doi.org/10.3109/07435800.2011.635622

Article  PubMed  CAS  Google Scholar 

B. Grubeck-Loebenstein, K. Trieb, A. Sztankay, W. Holter, H. Anderl et al., Retrobulbar T cells from patients with graves’ ophthalmopathy are CD8 + and specifically recognize autologous fibroblasts. J. Clin. Investig. 93, 2738–2743 (1994)

Article  PubMed  PubMed Central  CAS  Google Scholar 

Comments (0)

No login
gif