T. Fiolet, C. Casagrande, G. Nicolas et al. Dietary intakes of dioxins and polychlorobiphenyls (PCBs) and breast cancer risk in 9 European countries. Env. Int. 163, 107213 (2022). https://doi.org/10.1016/j.envint.2022.107213
Ministry of Food and Drug Safety of Korea. The study of total exposure assessment and integrated risk assessment for Dioxins (2020). Registration number: TRKO202300004331
EFSA Panel on Contaminants in the Food Chain (CONTAM), H.K. Knutsen, J. Alexander, L. Barregård et al. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J. 16(11), e05333 (2018). https://doi.org/10.2903/j.efsa.2018.5333
C.M. Rahul, K. Gayathri, C.N. Kesavachandran, Correction to: global trends of dioxin and dioxin‑like PCBs in animal‑origin foods: a systematic review and gap areas. Env. Monit. Assess. 196(8), 719 (2024). https://doi.org/10.1007/s10661-024-12904-8
U.S. Department of Agriculture. Dioxin FY. 2018 Survey: Dioxins and Dioxin-Like Compounds in the U.S. Domestic Meat and Poultry Supply. Food Safety and Inspection Service (2019). Available from: https://www.fsis.usda.gov
Z. Shi, Y. Li, X. Song et al. The burden of cancer attributable to dietary dioxins and dioxin-like compounds exposure in China, 2000–2020. Env. Int. 194, 109080 (2024). https://doi.org/10.1016/j.envint.2024.109080
B.A. Muzembo, M. Iwai-Shimada, T. Isobe et al. Dioxins levels in human blood after implementation of measures against dioxin exposure in Japan. Env. Health Prev. Med. 24(1), 6 (2019). https://doi.org/10.1186/s12199-018-0755-7
M. van Gerwen, V. Vasan, E. Genden et al. Human 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure and thyroid cancer risk. Toxicology 48, 153474 (2023). https://doi.org/10.1016/j.tox.2023.153474
X. Cong, Q. Liu, W. Li et al. Systematic review and meta-analysis of breast cancer risks in relation to 2,3,7,8-tetrachlorodibenzo-p-dioxin and per- and polyfluoroalkyl substances. Env. Sci. Pollut. Res. Int. 30(37), 86540–86555 (2023). https://doi.org/10.1007/s11356-023-28592-9
M.A. La Merrill, L.N. Vandenberg, M.T. Smith et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 16(1), 45–57 (2020). https://doi.org/10.1038/s41574-019-0273-8
Article PubMed CAS Google Scholar
P. Li, Y. Xu, Z. Li et al. Association between polychlorinated biphenyls exposure and incident type 2 diabetes mellitus: a nested case-control study. Env. Res. 228, 115743 (2023). https://doi.org/10.1016/j.envres.2023.115743
S.L. Wang, P.C. Tsai, C.Y. Yang et al. Increased risk of diabetes and polychlorinated biphenyls and dioxins: a 24-year follow-up study of the Yucheng cohort. Diabetes Care 31(8), 1574–1579 (2008). https://doi.org/10.2337/dc07-2449
Article PubMed PubMed Central Google Scholar
D.H. Lee, I.K. Lee, K. Song et al. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999-2002. Diabetes Care 29, 1638–1644 (2006). https://doi.org/10.2337/dc06-0543
Article PubMed CAS Google Scholar
R.G. Huang, X.B. Li, Y.Y. Wang et al. Endocrine-disrupting chemicals and autoimmune diseases. Env. Res. 231(Pt 2), 116222 (2023). https://doi.org/10.1016/j.envres.2023.116222
Y.H. Kim, Y.J. Shim, Y.J. Shin et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces calcium influx through T-type calcium channel and enhances lysosomal exocytosis and insulin secretion in INS-1 cells. Int. J. Toxicol. 28, 151–161 (2009). https://doi.org/10.1177/1091581809336885
Article PubMed CAS Google Scholar
M. Goodman, K.M. Narayan, D. Flanders et al. Dose-response relationship between serum 2,3,7,8-tetrachlorodibenzo-p-dioxin and diabetes mellitus: a meta-analysis. Am. J. Epidemiol. 181, 374–384 (2015). https://doi.org/10.1093/aje/kwu307
Article PubMed PubMed Central Google Scholar
J.S. Moon, S. Kang, J.H. Choi et al. 2023 Clinical practice guidelines for diabetes management in Korea: full version recommendation of the korean diabetes association. Diabetes Metab. J. 48, 546–708 (2024). https://doi.org/10.4093/dmj.2024.0249
Article PubMed PubMed Central Google Scholar
Centers for Disease Control and Prevention, Laboratory Procedure Manual Method 6501.04 (2016), https://wwwn.cdc.gov/nchs/data/nhanes/2009-2010/labmethods/DOXPOL_F_MET.pdf. Accessed on 1 July 2020
U.S Environmental Protection Agency, Definition and Procedure for the Determination of the Method Detection Limit, Revision 2 (2016), https://www.epa.gov/cwa-methods/procedures-detection-and-quantitation-documents
M. Van den Berg, L.S. Birnbaum, M. Denison et al. The 2005 World Health Organization re-evaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sc. 93(2), 223–241 (2006). https://doi.org/10.1093/toxsci/kfl055
X. Guo, L. Lin, K. Qin et al. Adverse childhood experiences and depressive symptoms among middle-aged or older adults in China and the mediating role of short sleep duration. J. Affect. Disord. 340, 711–718 (2023). https://doi.org/10.1016/j.jad.2023.08.082
P. Adineh, S. Amini, F. Abolnezhadian et al. Nuts, vegetables, fruits, and protein dietary pattern during pregnancy is inversely associated with risk of childhood allergies: a case-control study. Sci. Rep. 14, 842 (2024). https://doi.org/10.1038/s41598-024-51488-8
Article PubMed PubMed Central CAS Google Scholar
P.M. Lind, J. Penell, S. Salihovic et al. Circulating levels of p,p'-DDE are related to prevalent hypertension in the elderly. Env. Res. 129, 27–31 (2014). https://doi.org/10.1016/j.envres.2013.12.003
E. Raffetti, C. Donat-Vargas, S. Mentasti et al. Association between exposure to polychlorinated biphenyls and risk of hypertension: a systematic review and meta-analysis. Chemosphere 255, 126984 (2020). https://doi.org/10.1016/j.chemosphere.2020.126984
Article PubMed CAS Google Scholar
M. Pavuk, T.C. Serio, C. Cusack et al. Hypertension in relation to dioxins and polychlorinated biphenyls from the Anniston Community Health Survey Follow-Up. Env. Health Perspect. 127, 127007 (2019). https://doi.org/10.1289/EHP5272
C. Donat-Vargas, A. Åkesson, A. Tornevi et al. Persistent organochlorine pollutants in plasma, blood pressure, and hypertension in a longitudinal study. Hypertension 71, 1258–1268 (2018). https://doi.org/10.1161/HYPERTENSIONAHA.117.10691
Article PubMed CAS Google Scholar
R. Castilla, A. Asuaje, S. Rivère et al. Environmental pollutant hexachlorobenzene induces hypertension in a rat model. Chemosphere 195, 576–584 (2018). https://doi.org/10.1016/j.chemosphere.2017.11.117
Article PubMed CAS Google Scholar
J. Penell, L. Lind, S. Salihovic et al. Persistent organic pollutants are related to the change in circulating lipid levels during a 5-year follow-up. Env. Res. 134, 190–197 (2014). https://doi.org/10.1016/j.envres.2014.08.005
K. Singh, H.M. Chan, Association of blood polychlorinated biphenyls and cholesterol levels among Canadian Inuit. Env. Res. 160, 298–305 (2018). https://doi.org/10.1016/j.envres.2017.10.010
J.R. Suarez-Lopez, C.G. Clemesha, M. Porta et al. Organochlorine pesticides and polychlorinated biphenyls (PCBs) in early adulthood and blood lipids over a 23-year follow-up. Env. Toxicol. Pharmacol. 66, 24–35 (2019). https://doi.org/10.1016/j.etap.2018.12.018
W.H. Park, D.W. Jun, J.T. Kim et al. Novel cell-based assay reveals associations of circulating serum AhR-ligands with metabolic syndrome and mitochondrial dysfunction. Biofactors 39, 494–504 (2013). https://doi.org/10.1002/biof.1092
Article PubMed CAS Google Scholar
M. Novelli, P. Beffy, M. Masini et al. Selective beta-cell toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin on isolated pancreatic islets. Chemosphere 265, 129103 (2021). https://doi.org/10.1016/j.chemosphere.2020.129103
Article PubMed CAS Google Scholar
G. Barone, A. Storelli, A. Busco et al. Polychlorinated dioxins, furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in food from Italy: estimates of dietary intake and assessment. J. Food Sci. 86, 4741–4753 (2021). https://doi.org/10.1111/1750-3841.15901
Comments (0)