Acharya NK, Nagele EP, Han M et al (2012) Neuronal PAD4 expression and protein citrullination: possible role in production of autoantibodies associated with neurodegenerative disease. J Autoimmun 38(4):369–380. https://doi.org/10.1016/J.JAUT.2012.03.004
Article CAS PubMed Google Scholar
Al-Hilaly YK, Williams TL, Stewart-Parker M et al (2014) A central role for dityrosine crosslinking of Amyloid-β in Alzheimer’s disease. Acta Neuropathol Commun 2(1):1–17. https://doi.org/10.1186/2051-5960-1-83/TABLES/2
Ashton NJ, Janelidze S, Mattsson-Carlgren N et al (2022) Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer’s trial selection and disease monitoring. Nature Med 28(12):2555–2562. https://doi.org/10.1038/s41591-022-02074-w
Article CAS PubMed Google Scholar
Bai B, Wang X, Li Y et al (2020) Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression. Neuron 105(6):975-991.e7. https://doi.org/10.1016/J.NEURON.2019.12.015
Article CAS PubMed PubMed Central Google Scholar
Barthélemy NR, Saef B, Li Y et al (2023) CSF tau phosphorylation occupancies at T217 and T205 represent improved biomarkers of amyloid and tau pathology in Alzheimer’s disease. Nat Aging 3(4):391–401. https://doi.org/10.1038/s43587-023-00380-7
Article CAS PubMed PubMed Central Google Scholar
Barthélemy NR, Horie K, Sato C, Bateman RJ (2020) Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J Exp Med. https://doi.org/10.1084/jem.20200861
Article PubMed PubMed Central Google Scholar
Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM (2006) Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 12(7):856–861. https://doi.org/10.1038/nm1438
Article CAS PubMed PubMed Central Google Scholar
Bien J, Jefferson T, Čaušević M et al (2012) The metalloprotease meprin β generates amino terminal-truncated amyloid β peptide species. J Biol Chem 287(40):33304. https://doi.org/10.1074/JBC.M112.395608
Article CAS PubMed PubMed Central Google Scholar
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259. https://doi.org/10.1007/BF00308809
Article CAS PubMed Google Scholar
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112(4):389–404. https://doi.org/10.1007/s00401-006-0127-z
Article PubMed PubMed Central Google Scholar
Brinkmalm G, Hong W, Wang Z et al (2019) Identification of neurotoxic cross-linked amyloid-β dimers in the Alzheimer’s brain. Brain 142(5):1441–1457. https://doi.org/10.1093/BRAIN/AWZ066
Article PubMed PubMed Central Google Scholar
Budd Haeberlein S, Aisen PS, Barkhof F et al (2022) Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prev Alzheimer Disease 9(2):197–210. https://doi.org/10.14283/JPAD.2022.30/TABLES/3
Cabrera E, Mathews P, Mezhericher E et al (2018) Aβ truncated species: implications for brain clearance mechanisms and amyloid plaque deposition. Biochimica et Biophysica Acta (BBA) 1864(1):208–225. https://doi.org/10.1016/J.BBADIS.2017.07.005
Castellano JM, Kim J, Stewart FR et al (2011) Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med. https://doi.org/10.1126/SCITRANSLMED.3002156/SUPPL_FILE/3-89RA57_SM
Article PubMed PubMed Central Google Scholar
Chatterjee T, Das G, Chatterjee BK, Ghosh S, Chakrabarti P (2023) The role of protein-L-isoaspartyl methyltransferase (PIMT) in the suppression of toxicity of the oligomeric form of Aβ42, in addition to the inhibition of its fibrillization. ACS Chem Neurosci 14(16):2888–2901. https://doi.org/10.1021/acschemneuro.3c00281
Article CAS PubMed Google Scholar
Cummings JL, Cohen S, van Dyck CH et al (2018) ABBY: a phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology. https://doi.org/10.1212/WNL.0000000000005550
Article PubMed PubMed Central Google Scholar
van Dyck CH, Swanson CJ, Aisen P et al (2023) Lecanemab in early Alzheimer’s disease. N Engl J Med 388(1):9–21. https://doi.org/10.1056/NEJMoa2212948
Di Fede G, Catania M, Maderna E et al (2018) Molecular subtypes of Alzheimer’s disease. Sci Rep. https://doi.org/10.1038/S41598-018-21641-1
Article PubMed PubMed Central Google Scholar
Fukumoto H, Asami-Odaka A, Suzuki N, Iwatsubo T (1996) Association of Aβ40-positive senile plaques with microglial cells in the brains of patients with Alzheimer’s disease and in non-demented aged individuals. Neurodegeneration 5(1):13–17. https://doi.org/10.1006/NEUR.1996.0002
Article CAS PubMed Google Scholar
Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262(2):785–794. https://doi.org/10.1016/S0021-9258(19)75855-4
Article CAS PubMed Google Scholar
Gnoth K, Piechotta A, Kleinschmidt M et al (2020) Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer’s disease-like pathology. Alzheimers Res Ther 12(1):1–20. https://doi.org/10.1186/S13195-020-00719-X
Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8(1):159–168. https://doi.org/10.1016/0896-6273(92)90117-V
Article CAS PubMed Google Scholar
Gravina SA, Ho L, Eckman CB et al (1995) Amyloid β protein (Aβ) in Alzheimer’s disease brain: biochemical and immunocytochemical analysis with antibodies specific for forms ending at Aβ40 OR Aβ42(43). J Biol Chem 270(13):7013–7016. https://doi.org/10.1074/JBC.270.13.7013
Article CAS PubMed Google Scholar
Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ (2019) Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways. Nature Rev Neurol 16(1):30–42. https://doi.org/10.1038/s41582-019-0281-2
Muller-Hill B, Beyreuther K (1989) Molecular biology of Alzheimer’s disease. Annu Rev Biochem 58:287–307. https://doi.org/10.1146/ANNUREV.BI.58.070189.001443
Horie K, Barthélemy NR, Mallipeddi N et al (2020) Regional correlation of biochemical measures of amyloid and tau phosphorylation in the brain. Acta Neuropathol Commun 8(1):149. https://doi.org/10.1186/s40478-020-01019-z
Article CAS PubMed PubMed Central Google Scholar
Horie K, Barthélemy NR, Sato C, Bateman RJ (2021) CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer’s disease. Brain 144(2):515–527. https://doi.org/10.1093/brain/awaa373
Hyman BT, Phelps CH, Beach TG et al (2012) National institute on aging–Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8(1):1. https://doi.org/10.1016/J.JALZ.2011.10.007
Ishigami A, Ohsawa T, Hiratsuka M et al (2005) Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. J Neurosci Res 80(1):120–128. https://doi.org/10.1002/JNR.20431
Comments (0)