Isomerized Aβ in the brain can distinguish the status of amyloidosis in the Alzheimer’s disease spectrum

Acharya NK, Nagele EP, Han M et al (2012) Neuronal PAD4 expression and protein citrullination: possible role in production of autoantibodies associated with neurodegenerative disease. J Autoimmun 38(4):369–380. https://doi.org/10.1016/J.JAUT.2012.03.004

Article  CAS  PubMed  Google Scholar 

Al-Hilaly YK, Williams TL, Stewart-Parker M et al (2014) A central role for dityrosine crosslinking of Amyloid-β in Alzheimer’s disease. Acta Neuropathol Commun 2(1):1–17. https://doi.org/10.1186/2051-5960-1-83/TABLES/2

Article  Google Scholar 

Ashton NJ, Janelidze S, Mattsson-Carlgren N et al (2022) Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer’s trial selection and disease monitoring. Nature Med 28(12):2555–2562. https://doi.org/10.1038/s41591-022-02074-w

Article  CAS  PubMed  Google Scholar 

Bai B, Wang X, Li Y et al (2020) Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression. Neuron 105(6):975-991.e7. https://doi.org/10.1016/J.NEURON.2019.12.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barthélemy NR, Saef B, Li Y et al (2023) CSF tau phosphorylation occupancies at T217 and T205 represent improved biomarkers of amyloid and tau pathology in Alzheimer’s disease. Nat Aging 3(4):391–401. https://doi.org/10.1038/s43587-023-00380-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barthélemy NR, Horie K, Sato C, Bateman RJ (2020) Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J Exp Med. https://doi.org/10.1084/jem.20200861

Article  PubMed  PubMed Central  Google Scholar 

Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM (2006) Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 12(7):856–861. https://doi.org/10.1038/nm1438

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bien J, Jefferson T, Čaušević M et al (2012) The metalloprotease meprin β generates amino terminal-truncated amyloid β peptide species. J Biol Chem 287(40):33304. https://doi.org/10.1074/JBC.M112.395608

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259. https://doi.org/10.1007/BF00308809

Article  CAS  PubMed  Google Scholar 

Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112(4):389–404. https://doi.org/10.1007/s00401-006-0127-z

Article  PubMed  PubMed Central  Google Scholar 

Brinkmalm G, Hong W, Wang Z et al (2019) Identification of neurotoxic cross-linked amyloid-β dimers in the Alzheimer’s brain. Brain 142(5):1441–1457. https://doi.org/10.1093/BRAIN/AWZ066

Article  PubMed  PubMed Central  Google Scholar 

Budd Haeberlein S, Aisen PS, Barkhof F et al (2022) Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prev Alzheimer Disease 9(2):197–210. https://doi.org/10.14283/JPAD.2022.30/TABLES/3

Article  CAS  Google Scholar 

Cabrera E, Mathews P, Mezhericher E et al (2018) Aβ truncated species: implications for brain clearance mechanisms and amyloid plaque deposition. Biochimica et Biophysica Acta (BBA) 1864(1):208–225. https://doi.org/10.1016/J.BBADIS.2017.07.005

Article  CAS  Google Scholar 

Castellano JM, Kim J, Stewart FR et al (2011) Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med. https://doi.org/10.1126/SCITRANSLMED.3002156/SUPPL_FILE/3-89RA57_SM

Article  PubMed  PubMed Central  Google Scholar 

Chatterjee T, Das G, Chatterjee BK, Ghosh S, Chakrabarti P (2023) The role of protein-L-isoaspartyl methyltransferase (PIMT) in the suppression of toxicity of the oligomeric form of Aβ42, in addition to the inhibition of its fibrillization. ACS Chem Neurosci 14(16):2888–2901. https://doi.org/10.1021/acschemneuro.3c00281

Article  CAS  PubMed  Google Scholar 

Cummings JL, Cohen S, van Dyck CH et al (2018) ABBY: a phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology. https://doi.org/10.1212/WNL.0000000000005550

Article  PubMed  PubMed Central  Google Scholar 

van Dyck CH, Swanson CJ, Aisen P et al (2023) Lecanemab in early Alzheimer’s disease. N Engl J Med 388(1):9–21. https://doi.org/10.1056/NEJMoa2212948

Article  PubMed  Google Scholar 

Di Fede G, Catania M, Maderna E et al (2018) Molecular subtypes of Alzheimer’s disease. Sci Rep. https://doi.org/10.1038/S41598-018-21641-1

Article  PubMed  PubMed Central  Google Scholar 

Fukumoto H, Asami-Odaka A, Suzuki N, Iwatsubo T (1996) Association of Aβ40-positive senile plaques with microglial cells in the brains of patients with Alzheimer’s disease and in non-demented aged individuals. Neurodegeneration 5(1):13–17. https://doi.org/10.1006/NEUR.1996.0002

Article  CAS  PubMed  Google Scholar 

Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262(2):785–794. https://doi.org/10.1016/S0021-9258(19)75855-4

Article  CAS  PubMed  Google Scholar 

Gnoth K, Piechotta A, Kleinschmidt M et al (2020) Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer’s disease-like pathology. Alzheimers Res Ther 12(1):1–20. https://doi.org/10.1186/S13195-020-00719-X

Article  Google Scholar 

Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8(1):159–168. https://doi.org/10.1016/0896-6273(92)90117-V

Article  CAS  PubMed  Google Scholar 

Gravina SA, Ho L, Eckman CB et al (1995) Amyloid β protein (Aβ) in Alzheimer’s disease brain: biochemical and immunocytochemical analysis with antibodies specific for forms ending at Aβ40 OR Aβ42(43). J Biol Chem 270(13):7013–7016. https://doi.org/10.1074/JBC.270.13.7013

Article  CAS  PubMed  Google Scholar 

Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ (2019) Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways. Nature Rev Neurol 16(1):30–42. https://doi.org/10.1038/s41582-019-0281-2

Article  CAS  Google Scholar 

Muller-Hill B, Beyreuther K (1989) Molecular biology of Alzheimer’s disease. Annu Rev Biochem 58:287–307. https://doi.org/10.1146/ANNUREV.BI.58.070189.001443

Article  Google Scholar 

Horie K, Barthélemy NR, Mallipeddi N et al (2020) Regional correlation of biochemical measures of amyloid and tau phosphorylation in the brain. Acta Neuropathol Commun 8(1):149. https://doi.org/10.1186/s40478-020-01019-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horie K, Barthélemy NR, Sato C, Bateman RJ (2021) CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer’s disease. Brain 144(2):515–527. https://doi.org/10.1093/brain/awaa373

Article  PubMed  Google Scholar 

Hyman BT, Phelps CH, Beach TG et al (2012) National institute on aging–Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8(1):1. https://doi.org/10.1016/J.JALZ.2011.10.007

Article  PubMed  Google Scholar 

Ishigami A, Ohsawa T, Hiratsuka M et al (2005) Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. J Neurosci Res 80(1):120–128. https://doi.org/10.1002/JNR.20431

Comments (0)

No login
gif