Changes in Ascorbate Content and the Expression Pattern of Ascorbate Metabolism Genes in Garlic L. Leaves in Response to Cold Stress

Kidokoro, S., Shinozaki, K., and Yamaguchi-Shinozaki, K., Transcriptional regulatory network of plant cold-stress responses, Trends Plant Sci., 2022, vol. 27, no. 9, pp. 922—935. https://doi.org/10.1016/j.tplants.2022.01.008

Article  CAS  PubMed  Google Scholar 

Apel, K. and Hirt, H., Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 373—399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

Article  CAS  PubMed  Google Scholar 

Smirnoff, N., Ascorbic acid metabolism and functions: a comparison of plants and mammals, Free Radical Biol. Med., 2018, vol. 22, pp. 116—129. https://doi.org/10.1016/j.freeradbiomed.2018.03.033

Article  CAS  Google Scholar 

Broad, R.C., Bonneau, J.P., Hellens, R.P., and Johnson, A.A.T., Manipulation of ascorbate biosynthetic, recycling, and regulatory pathways for improved abiotic stress tolerance in plants, Int. J. Mol. Sci., 2020, vol. 21. https://doi.org/10.3390/ijms21051790

Ali, B., Pantha, S., Acharya, R., et al., Enhanced ascorbate level improves multi-stress tolerance in a widely grown indica rice variety without compromising its agronomic characteristics, J. Plant Physiol., 2019, vol. 240. https://doi.org/10.1016/j.jplph.2019.152998

Dowdle, J., Ishikawa, T., Gatzek, S., et al., Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling, Plant J., 2007, vol. 52, pp. 673—689. https://doi.org/10.1111/j.1365-313X.2007.03266.x

Article  CAS  PubMed  Google Scholar 

Urzica, E.I., Adler, L.N., Page, M.D., et al., Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP-L-galactose phosphorylase, J. Biol. Chem., 2012, vol. 287, pp. 14234—14245. https://doi.org/10.1074/jbc.M112.341982

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dufoo-Hurtado, M.D., Huerta-Ocampo, J.Á., Barrera-Pacheco, A., et al., Low temperature conditioning of garlic (Allium sativum L.) “seed” cloves induces alterations in sprouts proteome, Front. Plant Sci., 2015, vol. 6. https://doi.org/10.3389/fpls.2015.00332

Bian, H., Zhou, Q., Du, Z., et al., Integrated transcriptomics and metabolomics analysis of the fructan metabolism response to low-temperature stress in garlic, Genes (Basel), 2023, vol. 14, no. 6. https://doi.org/10.3390/genes14061290

Filyushin, M.A., Anisimova, O.K., Shchennikova, A.V., and Kochieva, E.Z., DREB1 and DREB2 genes in garlic (Allium sativum L.): genome-wide identification, characterization, and stress response, Plants (Basel), 2023, vol. 12, no. 13. https://doi.org/10.3390/plants12132538

Anisimova, O.K., Shchennikova, A.V., Kochieva, E.Z., and Filyushin, M.A., Identification of monodehydroascorbate reductase (MDHAR) genes in garlic (Allium sativum L.) and their role in the response to Fusarium proliferatum infection, Russ. J. Genet., 2022, vol. 58, no. 7, pp. 773—782. https://doi.org/10.1134/S1022795422070031

Article  CAS  Google Scholar 

Efremov, G.I., Slugina, M.A., Shchennikova, A.V., and Kochieva, E.Z., Differential regulation of phytoene synthase PSY1 during fruit carotenogenesis in cultivated and wild tomato species (Solanum section Lycopersicon), Plants, 2020, vol. 9, no. 9. https://doi.org/10.3390/plants9091169

Sun, X., Zhu, S., Li, N., et al., A chromosome-level genome assembly of garlic (Allium sativum) provides insights into genome evolution and allicin biosynthesis, Mol. Plant, 2020, vol. 13, pp. 1328—1339. https://doi.org/10.1016/j.molp.2020.07.019

Article  CAS  PubMed  Google Scholar 

Li, S., Liu, S., Zhang, Q., et al., The interaction of ABA and ROS in plant growth and stress resistances, Front. Plant Sci., 2022, vol. 13. https://doi.org/10.3389/fpls.2022.1050132

Wu, W., Wang, L., Huang, W., et al., A high-quality genome assembly reveals adaptations underlying glossy, wax-coated leaves in the heat-tolerant wild raspberry Rubus leucanthus, DNA Res., 2024, vol. 31, no. 4. https://doi.org/10.1093/dnares/dsae024

García, G., Clemente-Moreno, M.J., Díaz-Vivancos, P., et al., The apoplastic and symplastic antioxidant system in onion: response to long-term salt stress, Antioxidants (Basel), 2020, vol. 12. https://doi.org/10.3390/antiox9010067

Feng, H., Liu, W., Zhang, Q., et al., TaMDHAR4, a monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici, Plant Physiol. Biochem., 2014, vol. 76, p. 7. https://doi.org/10.1016/j.plaphy.2013.12.015

Article  CAS  PubMed  Google Scholar 

Zechmann, B., Compartment-specific importance of ascorbate during environmental stress in plants, Antioxid. Redox. Signal., 2018, vol. 29, no. 15, pp. 1488—1501. https://doi.org/10.1089/ars.2017.7232

Article  CAS  PubMed  Google Scholar 

Badejo, A.A., Fujikawa, Y., and Esaka, M., Gene expression of ascorbic acid biosynthesis related enzymes of the Smirnof—Wheeler pathway in acerola (Malpighia glabra), J. Plant Physiol., 2009, vol. 166, pp. 652—660. https://doi.org/10.1016/j.jplph.2008.09.004

Article  CAS  PubMed  Google Scholar 

Anisimova, O.K., Seredin, T.M., Shchennikova, A.V., et al., Estimation of the vitamin C content and GDP-L-galactose phosphorylase gene (VTC2) expression level in leek (Allium porrum L.) cultivars, Russ. J. Plant Physiol., 2021, vol. 68, pp. 85—93. https://doi.org/10.1134/S1021443720060023

Article  CAS  Google Scholar 

Comments (0)

No login
gif