Kidokoro, S., Shinozaki, K., and Yamaguchi-Shinozaki, K., Transcriptional regulatory network of plant cold-stress responses, Trends Plant Sci., 2022, vol. 27, no. 9, pp. 922—935. https://doi.org/10.1016/j.tplants.2022.01.008
Article CAS PubMed Google Scholar
Apel, K. and Hirt, H., Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 373—399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
Article CAS PubMed Google Scholar
Smirnoff, N., Ascorbic acid metabolism and functions: a comparison of plants and mammals, Free Radical Biol. Med., 2018, vol. 22, pp. 116—129. https://doi.org/10.1016/j.freeradbiomed.2018.03.033
Broad, R.C., Bonneau, J.P., Hellens, R.P., and Johnson, A.A.T., Manipulation of ascorbate biosynthetic, recycling, and regulatory pathways for improved abiotic stress tolerance in plants, Int. J. Mol. Sci., 2020, vol. 21. https://doi.org/10.3390/ijms21051790
Ali, B., Pantha, S., Acharya, R., et al., Enhanced ascorbate level improves multi-stress tolerance in a widely grown indica rice variety without compromising its agronomic characteristics, J. Plant Physiol., 2019, vol. 240. https://doi.org/10.1016/j.jplph.2019.152998
Dowdle, J., Ishikawa, T., Gatzek, S., et al., Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling, Plant J., 2007, vol. 52, pp. 673—689. https://doi.org/10.1111/j.1365-313X.2007.03266.x
Article CAS PubMed Google Scholar
Urzica, E.I., Adler, L.N., Page, M.D., et al., Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP-L-galactose phosphorylase, J. Biol. Chem., 2012, vol. 287, pp. 14234—14245. https://doi.org/10.1074/jbc.M112.341982
Article CAS PubMed PubMed Central Google Scholar
Dufoo-Hurtado, M.D., Huerta-Ocampo, J.Á., Barrera-Pacheco, A., et al., Low temperature conditioning of garlic (Allium sativum L.) “seed” cloves induces alterations in sprouts proteome, Front. Plant Sci., 2015, vol. 6. https://doi.org/10.3389/fpls.2015.00332
Bian, H., Zhou, Q., Du, Z., et al., Integrated transcriptomics and metabolomics analysis of the fructan metabolism response to low-temperature stress in garlic, Genes (Basel), 2023, vol. 14, no. 6. https://doi.org/10.3390/genes14061290
Filyushin, M.A., Anisimova, O.K., Shchennikova, A.V., and Kochieva, E.Z., DREB1 and DREB2 genes in garlic (Allium sativum L.): genome-wide identification, characterization, and stress response, Plants (Basel), 2023, vol. 12, no. 13. https://doi.org/10.3390/plants12132538
Anisimova, O.K., Shchennikova, A.V., Kochieva, E.Z., and Filyushin, M.A., Identification of monodehydroascorbate reductase (MDHAR) genes in garlic (Allium sativum L.) and their role in the response to Fusarium proliferatum infection, Russ. J. Genet., 2022, vol. 58, no. 7, pp. 773—782. https://doi.org/10.1134/S1022795422070031
Efremov, G.I., Slugina, M.A., Shchennikova, A.V., and Kochieva, E.Z., Differential regulation of phytoene synthase PSY1 during fruit carotenogenesis in cultivated and wild tomato species (Solanum section Lycopersicon), Plants, 2020, vol. 9, no. 9. https://doi.org/10.3390/plants9091169
Sun, X., Zhu, S., Li, N., et al., A chromosome-level genome assembly of garlic (Allium sativum) provides insights into genome evolution and allicin biosynthesis, Mol. Plant, 2020, vol. 13, pp. 1328—1339. https://doi.org/10.1016/j.molp.2020.07.019
Article CAS PubMed Google Scholar
Li, S., Liu, S., Zhang, Q., et al., The interaction of ABA and ROS in plant growth and stress resistances, Front. Plant Sci., 2022, vol. 13. https://doi.org/10.3389/fpls.2022.1050132
Wu, W., Wang, L., Huang, W., et al., A high-quality genome assembly reveals adaptations underlying glossy, wax-coated leaves in the heat-tolerant wild raspberry Rubus leucanthus, DNA Res., 2024, vol. 31, no. 4. https://doi.org/10.1093/dnares/dsae024
García, G., Clemente-Moreno, M.J., Díaz-Vivancos, P., et al., The apoplastic and symplastic antioxidant system in onion: response to long-term salt stress, Antioxidants (Basel), 2020, vol. 12. https://doi.org/10.3390/antiox9010067
Feng, H., Liu, W., Zhang, Q., et al., TaMDHAR4, a monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici, Plant Physiol. Biochem., 2014, vol. 76, p. 7. https://doi.org/10.1016/j.plaphy.2013.12.015
Article CAS PubMed Google Scholar
Zechmann, B., Compartment-specific importance of ascorbate during environmental stress in plants, Antioxid. Redox. Signal., 2018, vol. 29, no. 15, pp. 1488—1501. https://doi.org/10.1089/ars.2017.7232
Article CAS PubMed Google Scholar
Badejo, A.A., Fujikawa, Y., and Esaka, M., Gene expression of ascorbic acid biosynthesis related enzymes of the Smirnof—Wheeler pathway in acerola (Malpighia glabra), J. Plant Physiol., 2009, vol. 166, pp. 652—660. https://doi.org/10.1016/j.jplph.2008.09.004
Article CAS PubMed Google Scholar
Anisimova, O.K., Seredin, T.M., Shchennikova, A.V., et al., Estimation of the vitamin C content and GDP-L-galactose phosphorylase gene (VTC2) expression level in leek (Allium porrum L.) cultivars, Russ. J. Plant Physiol., 2021, vol. 68, pp. 85—93. https://doi.org/10.1134/S1021443720060023
Comments (0)