Sies, H., Oxidative stress: concept and some practical aspects, Antioxidants (Basel), 2020, vol. 9, no. 9. https://doi.org/10.3390/antiox9090852
Sun, Y., Wang, X., Li, L., et al., The role of gut microbiota in intestinal disease: from an oxidative stress perspective, Front. Microbiol., 2024, vol. 15. https://doi.org/10.3389/fmicb.2024.1328324
Averina, O.V., Poluektova, E.U., Marsova, M.V., and Danilenko, V.N., Biomarkers and utility of the antioxidant potential of probiotic lactobacilli and bifidobacteria as representatives of the human gut microbiota, Biomedicines, 2021, vol. 9, no. 10. https://doi.org/10.3390/biomedicines9101340
Feng, T. and Wang, J., Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review, Gut Microbes, 2020, vol. 12, no. 1. https://doi.org/10.1080/19490976.2020.1801944
Kong, Y., Olejar, K.J., On, S.L.W., and Chelikani, V., The potential of Lactobacillus spp. for modulating oxidative stress in the gastrointestinal tract, Antioxidants (Basel), 2020, vol. 9, no. 7. https://doi.org/10.3390/antiox9070610
Zhao, T., Wang, H., Liu, Z., et al., Recent perspective of Lactobacillus in reducing oxidative stress to prevent disease, Antioxidants (Basel), 2023, vol. 12, no. 3. https://doi.org/10.3390/antiox12030769
Feyereisen, M., Mahony, J., Kelleher, P., et al., Comparative genome analysis of the Lactobacillus brevis species, BMC Genomics, 2019, vol. 20, no. 1, p. 416. https://doi.org/10.1186/s12864-019-5783-1
Article CAS PubMed PubMed Central Google Scholar
Kim, K., Yang, S., and Paik, H., Probiotic properties of novel probiotic Levilactobacillus brevis KU15147 isolated from radish kimchi and its antioxidant and immunoenhancing activities, Food Sci. Biotechnol., 2021, vol. 30, pp. 257—265. https://doi.org/10.1007/s10068-020-00853-0
Article CAS PubMed PubMed Central Google Scholar
Stankovic, M., Veljovic, K., Popovic, N., et al., Lactobacillus brevis BGZLS10-17 and Lb. plantarum BGPKM22 exhibit anti-inflammatory effect by attenuation of NF-κB and MAPK signaling in human bronchial epithelial cells, Int. J. Mol. Sci., 2022, vol. 23, no. 10. https://doi.org/10.3390/ijms23105547
Kumar, S., Praneet, N.S., and Suchiang, K., Lactobacillus brevis MTCC 1750 enhances oxidative stress resistance and lifespan extension with improved physiological and functional capacity in Caenorhabditis elegans via the DAF-16 pathway, Free Radical Res., 2022, vol. 56, nos. 7—8, pp. 555—571. https://doi.org/10.1080/10715762.2022.2155518
Jiang, X., Gu, S., Liu, D., et al., Lactobacillus brevis 23017 relieves mercury toxicity in the colon by modulation of oxidative stress and inflammation through the interplay of MAPK and NF-κB signaling cascades, Front. Microbiol., 2018, vol. 9. https://doi.org/10.3389/fmicb.2018.02425
Yunes, R.A., Poluektova, E.U., Dyachkova, M.S., et al., GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota, Anaerobe, 2016, vol. 42, pp. 197—204. https://doi.org/10.1016/j.anaerobe.2016.10.011
Article CAS PubMed Google Scholar
Marsova, M.V., Abilev, S.K., Poluektova, E.U., and Danilenko, V.N., A bioluminescent test system reveals valuable antioxidant properties of Lactobacillus strains from human microbiota, World J. Microbiol. Biotechnol., 2018, vol. 34, no. 2, p. 27. https://doi.org/10.1007/s11274-018-2410-2
Article CAS PubMed Google Scholar
Marsova, M., Odorskaya, M., Novichkova, M., et al., The Lactobacillus brevis 47f strain protects the murine intestine from enteropathy induced by 5-fluorouracil, Microorganisms, 2020, vol. 8, no. 6. https://doi.org/10.3390/microorganisms8060876
Olekhnovich, E.I., Batotsyrenova, E.G., Yunes, R.A., et al., The effects of Levilactobacillus brevis on the physiological parameters and gut microbiota composition of rats subjected to desynchronosis, Microb. Cell Fact., 2021, vol. 20, p. 226. https://doi.org/10.1186/s12934-021-01716-x
Article CAS PubMed PubMed Central Google Scholar
Kochetkov, N., Smorodinskaya, S., Vatlin, A., et al., Ability of Lactobacillus brevis 47f to alleviate the toxic effects of imidacloprid low concentration on the histological parameters and cytokine profile of zebrafish (Danio rerio), Int. J. Mol. Sci., 2023, vol. 24, no. 15. https://doi.org/10.3390/ijms241512290
Poluektova, E.U., Averina, O.V., Kovtun, A.S., et al., Transcriptomic analysis of the Levilactobacillus brevis 47f strain under oxidative stress, Russ. J. Genet., 2023, vol. 59, no. 8, pp. 770—778. https://doi.org/10.1134/S1022795423080100
DeMan, J., Rogosa, M., and Sharpe, M., A medium for the cultivation of lactobacilli, J. Appl. Microbiol., 1960, vol. 23, no. 1, pp. 130—135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
Rappsilber, J., Mann, M., and Ishihama, Y., Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips, Nat. Protoc., 2007, vol. 2, no. 8, pp. 1896—1906. https://doi.org/10.1038/nprot.2007.261
Article CAS PubMed Google Scholar
Ma, B., Zhang, K., Hendrie, C., et al., PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry, Rapid. Commun. Mass Spectrom., 2003, vol. 17, no. 20, pp. 2337—2342. https://doi.org/10.1002/rcm.1196
Article CAS PubMed Google Scholar
Yang, M., Wenner, N., Dykes, G.F., et al., Biogenesis of a bacterial metabolosome for propanediol utilization, Nat. Commun., 2022, vol. 13, no. 1, p. 2920. https://doi.org/10.1038/s41467-022-30608-w
Article CAS PubMed PubMed Central Google Scholar
Mota, M.J., Lopes, R.P., Sousa, S., et al., Lactobacillus reuteri growth and fermentation under high pressure towards the production of 1,3-propanediol, Food Res. Int., 2018, vol. 113, pp. 424—432. https://doi.org/10.1016/j.foodres.2018.07.034
Article CAS PubMed Google Scholar
Champomier-Vergès, M.C., Zuñiga, M., Morel-Deville, F., et al., Relationship between arginine degradation, pH and survival in Lactobacillus sakei, FEMS Microbiol. Lett., 1999, vol. 180, pp. 297—304. https://doi.org/10.1111/j.1574-6968.1999.tb08809.x
Basu Thakur, P., Long, A.R., Nelson, B.J., et al., Complex responses to hydrogen peroxide and hypochlorous acid by the probiotic bacterium Lactobacillus reuteri, mSystems, 2019, vol. 4, no. 5. https://doi.org/10.1128/mSystems.00453-19
Zhai, Z., Yang, Y., Wang, H., et al., Global transcriptomic analysis of Lactobacillus plantarum CAUH2 in response to hydrogen peroxide stress, Food Microbiol., 2020, vol. 87. https://doi.org/10.1016/j.fm.2019.103389
Poluektova, E.U., Mavletova, D.A., Odorskaya, M.V., et al., Comparative genomic, transcriptomic, and proteomic analysis of the Limosilactobacillus fermentum U-21 strain promising for the creation of a pharmabiotic, Russ. J. Genet., 2022, vol. 58, no. 9, pp. 1079—1090. https://doi.org/10.1134/S1022795422090125
Averill-Bates, D.A., The antioxidant glutathione, Vitam. Horm., 2023, vol. 121, pp. 109—141. https://doi.org/10.1016/bs.vh.2022.09.002
Article CAS PubMed Google Scholar
Lin, X., Xia, Y., Yang, Y., et al., Probiotic characteristics of Lactobacillus plantarum AR113 and its molecular mechanism of antioxidant, LWT, 2020, vol. 126. https://doi.org/10.1016/j.lwt.2020.109278
Weissbach, H., Etienne, F., Hoshi, T., et al., Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function, Arch. Biochem. Biophys., 2002, vol. 397, no. 2, pp. 172—178. https://doi.org/10.1006/abbi.2001.2664
Article CAS PubMed Google Scholar
Zhang, C., Gui, Y., Chen, X., et al., Transcriptional homogenization of Lactobacillus rhamnosus hsryfm 1301 under heat stress and oxidative stress, Appl. Microbiol. Biotechnol., 2020, vol. 104, no. 6, pp. 2611—2621. https://doi.org/10.1007/s00253-020-10407-3
Article CAS PubMed Google Scholar
Rojas-Tapias, D.F. and Helmann, J.D., Roles and regulation of Spx family transcription factors in Bacillus subtilis and related species, Adv. Microb. Physiol., 2019, vol. 75, pp. 279—323. https://doi.org/10.1016/bs.ampbs.2019.05.003
Article CAS PubMed PubMed Central Google Scholar
Teixeira, J.S., Seeras, A., Sanchez-Maldonado, A.F., et al., Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri, Food Microbiol., 2014, vol. 42, pp. 172—180. https://doi.org/10.1016/j.fm.2014.03.015
Article CAS PubMed Google Scholar
Zotta, T., Parente, E., and Ricciardi, A., Aerobic metabolism in the genus Lactobacillus: impact on stress response and potential applications in the food industry, J. Appl. Microbiol., 2017, vol. 122, no. 4, pp. 857—869. https://doi.org/10.1111/jam.13399
Article CAS PubMed Google Scholar
Kang, T., Korbe, D.R., and Tanaka, T., Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1, AMB Express, 2013, vol. 3, no. 1. https://doi.org/10.1186/2191-0855-3-10
Stevens, M.J.A., Wiersma, A., de Vos, W.M., et al., Improvement of Lactobacillus plantarum aerobic growth as directed by comprehensive transcriptome analysis, Appl. Environ. Microbiol., 2008, vol. 74, no. 15, pp. 4776—4778. https://doi.org/10.1128/AEM.00136-08
Article CAS PubMed PubMed Central Google Scholar
Lu, J. and Holmgren, A., The thioredoxin antioxidant system: review, Free Radic. Biol. Med., 2014, vol. 66, no. 8, pp. 75—87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036
Article CAS PubMed Google Scholar
Siciliano, R.A., Pannella, G., Lippolis, R., et al., Impact of aerobic and respirative life-style on Lactobacillus casei N87 proteome, Int. J. Food Microbiol., 2019, vol. 298, pp. 51—62. https://doi.org/10.1016/j.ijfoodmicro.2019.03.006
Article CAS PubMed Google Scholar
Dinarieva, T.Y., Klimko, A.I., Kahnt, J., et al., Adaptation of Lacticaseibacillus rhamnosus CM MSU 529 to aerobic growth: a proteomic approach, Microorganisms, 2023, vol. 11, no. 2. https://doi.org/10.3390/microorganisms11020313
Averina, O.V., Kovtun, A.S., Mavletova, D.A., et al., Oxidative stress response of probiotic strain Bifidobacterium longum subsp. longum GT15, Foods, 2023, vol. 12, no. 18.
Comments (0)