Proteomic Analysis of the 47f Strain under Oxidative Stress

Sies, H., Oxidative stress: concept and some practical aspects, Antioxidants (Basel), 2020, vol. 9, no. 9. https://doi.org/10.3390/antiox9090852

Sun, Y., Wang, X., Li, L., et al., The role of gut microbiota in intestinal disease: from an oxidative stress perspective, Front. Microbiol., 2024, vol. 15. https://doi.org/10.3389/fmicb.2024.1328324

Averina, O.V., Poluektova, E.U., Marsova, M.V., and Danilenko, V.N., Biomarkers and utility of the antioxidant potential of probiotic lactobacilli and bifidobacteria as representatives of the human gut microbiota, Biomedicines, 2021, vol. 9, no. 10. https://doi.org/10.3390/biomedicines9101340

Feng, T. and Wang, J., Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review, Gut Microbes, 2020, vol. 12, no. 1. https://doi.org/10.1080/19490976.2020.1801944

Kong, Y., Olejar, K.J., On, S.L.W., and Chelikani, V., The potential of Lactobacillus spp. for modulating oxidative stress in the gastrointestinal tract, Antioxidants (Basel), 2020, vol. 9, no. 7. https://doi.org/10.3390/antiox9070610

Zhao, T., Wang, H., Liu, Z., et al., Recent perspective of Lactobacillus in reducing oxidative stress to prevent disease, Antioxidants (Basel), 2023, vol. 12, no. 3. https://doi.org/10.3390/antiox12030769

Feyereisen, M., Mahony, J., Kelleher, P., et al., Comparative genome analysis of the Lactobacillus brevis species, BMC Genomics, 2019, vol. 20, no. 1, p. 416. https://doi.org/10.1186/s12864-019-5783-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, K., Yang, S., and Paik, H., Probiotic properties of novel probiotic Levilactobacillus brevis KU15147 isolated from radish kimchi and its antioxidant and immunoenhancing activities, Food Sci. Biotechnol., 2021, vol. 30, pp. 257—265. https://doi.org/10.1007/s10068-020-00853-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stankovic, M., Veljovic, K., Popovic, N., et al., Lactobacillus brevis BGZLS10-17 and Lb. plantarum BGPKM22 exhibit anti-inflammatory effect by attenuation of NF-κB and MAPK signaling in human bronchial epithelial cells, Int. J. Mol. Sci., 2022, vol. 23, no. 10. https://doi.org/10.3390/ijms23105547

Kumar, S., Praneet, N.S., and Suchiang, K., Lactobacillus brevis MTCC 1750 enhances oxidative stress resistance and lifespan extension with improved physiological and functional capacity in Caenorhabditis elegans via the DAF-16 pathway, Free Radical Res., 2022, vol. 56, nos. 7—8, pp. 555—571. https://doi.org/10.1080/10715762.2022.2155518

Article  CAS  Google Scholar 

Jiang, X., Gu, S., Liu, D., et al., Lactobacillus brevis 23017 relieves mercury toxicity in the colon by modulation of oxidative stress and inflammation through the interplay of MAPK and NF-κB signaling cascades, Front. Microbiol., 2018, vol. 9. https://doi.org/10.3389/fmicb.2018.02425

Yunes, R.A., Poluektova, E.U., Dyachkova, M.S., et al., GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota, Anaerobe, 2016, vol. 42, pp. 197—204. https://doi.org/10.1016/j.anaerobe.2016.10.011

Article  CAS  PubMed  Google Scholar 

Marsova, M.V., Abilev, S.K., Poluektova, E.U., and Danilenko, V.N., A bioluminescent test system reveals valuable antioxidant properties of Lactobacillus strains from human microbiota, World J. Microbiol. Biotechnol., 2018, vol. 34, no. 2, p. 27. https://doi.org/10.1007/s11274-018-2410-2

Article  CAS  PubMed  Google Scholar 

Marsova, M., Odorskaya, M., Novichkova, M., et al., The Lactobacillus brevis 47f strain protects the murine intestine from enteropathy induced by 5-fluorouracil, Microorganisms, 2020, vol. 8, no. 6. https://doi.org/10.3390/microorganisms8060876

Olekhnovich, E.I., Batotsyrenova, E.G., Yunes, R.A., et al., The effects of Levilactobacillus brevis on the physiological parameters and gut microbiota composition of rats subjected to desynchronosis, Microb. Cell Fact., 2021, vol. 20, p. 226. https://doi.org/10.1186/s12934-021-01716-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kochetkov, N., Smorodinskaya, S., Vatlin, A., et al., Ability of Lactobacillus brevis 47f to alleviate the toxic effects of imidacloprid low concentration on the histological parameters and cytokine profile of zebrafish (Danio rerio), Int. J. Mol. Sci., 2023, vol. 24, no. 15. https://doi.org/10.3390/ijms241512290

Poluektova, E.U., Averina, O.V., Kovtun, A.S., et al., Transcriptomic analysis of the Levilactobacillus brevis 47f strain under oxidative stress, Russ. J. Genet., 2023, vol. 59, no. 8, pp. 770—778. https://doi.org/10.1134/S1022795423080100

Article  CAS  Google Scholar 

DeMan, J., Rogosa, M., and Sharpe, M., A medium for the cultivation of lactobacilli, J. Appl. Microbiol., 1960, vol. 23, no. 1, pp. 130—135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x

Article  Google Scholar 

Rappsilber, J., Mann, M., and Ishihama, Y., Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips, Nat. Protoc., 2007, vol. 2, no. 8, pp. 1896—1906. https://doi.org/10.1038/nprot.2007.261

Article  CAS  PubMed  Google Scholar 

Ma, B., Zhang, K., Hendrie, C., et al., PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry, Rapid. Commun. Mass Spectrom., 2003, vol. 17, no. 20, pp. 2337—2342. https://doi.org/10.1002/rcm.1196

Article  CAS  PubMed  Google Scholar 

Yang, M., Wenner, N., Dykes, G.F., et al., Biogenesis of a bacterial metabolosome for propanediol utilization, Nat. Commun., 2022, vol. 13, no. 1, p. 2920. https://doi.org/10.1038/s41467-022-30608-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mota, M.J., Lopes, R.P., Sousa, S., et al., Lactobacillus reuteri growth and fermentation under high pressure towards the production of 1,3-propanediol, Food Res. Int., 2018, vol. 113, pp. 424—432. https://doi.org/10.1016/j.foodres.2018.07.034

Article  CAS  PubMed  Google Scholar 

Champomier-Vergès, M.C., Zuñiga, M., Morel-Deville, F., et al., Relationship between arginine degradation, pH and survival in Lactobacillus sakei, FEMS Microbiol. Lett., 1999, vol. 180, pp. 297—304. https://doi.org/10.1111/j.1574-6968.1999.tb08809.x

Article  PubMed  Google Scholar 

Basu Thakur, P., Long, A.R., Nelson, B.J., et al., Complex responses to hydrogen peroxide and hypochlorous acid by the probiotic bacterium Lactobacillus reuteri, mSystems, 2019, vol. 4, no. 5. https://doi.org/10.1128/mSystems.00453-19

Zhai, Z., Yang, Y., Wang, H., et al., Global transcriptomic analysis of Lactobacillus plantarum CAUH2 in response to hydrogen peroxide stress, Food Microbiol., 2020, vol. 87. https://doi.org/10.1016/j.fm.2019.103389

Poluektova, E.U., Mavletova, D.A., Odorskaya, M.V., et al., Comparative genomic, transcriptomic, and proteomic analysis of the Limosilactobacillus fermentum U-21 strain promising for the creation of a pharmabiotic, Russ. J. Genet., 2022, vol. 58, no. 9, pp. 1079—1090. https://doi.org/10.1134/S1022795422090125

Article  CAS  Google Scholar 

Averill-Bates, D.A., The antioxidant glutathione, Vitam. Horm., 2023, vol. 121, pp. 109—141. https://doi.org/10.1016/bs.vh.2022.09.002

Article  CAS  PubMed  Google Scholar 

Lin, X., Xia, Y., Yang, Y., et al., Probiotic characteristics of Lactobacillus plantarum AR113 and its molecular mechanism of antioxidant, LWT, 2020, vol. 126. https://doi.org/10.1016/j.lwt.2020.109278

Weissbach, H., Etienne, F., Hoshi, T., et al., Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function, Arch. Biochem. Biophys., 2002, vol. 397, no. 2, pp. 172—178. https://doi.org/10.1006/abbi.2001.2664

Article  CAS  PubMed  Google Scholar 

Zhang, C., Gui, Y., Chen, X., et al., Transcriptional homogenization of Lactobacillus rhamnosus hsryfm 1301 under heat stress and oxidative stress, Appl. Microbiol. Biotechnol., 2020, vol. 104, no. 6, pp. 2611—2621. https://doi.org/10.1007/s00253-020-10407-3

Article  CAS  PubMed  Google Scholar 

Rojas-Tapias, D.F. and Helmann, J.D., Roles and regulation of Spx family transcription factors in Bacillus subtilis and related species, Adv. Microb. Physiol., 2019, vol. 75, pp. 279—323. https://doi.org/10.1016/bs.ampbs.2019.05.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teixeira, J.S., Seeras, A., Sanchez-Maldonado, A.F., et al., Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri, Food Microbiol., 2014, vol. 42, pp. 172—180. https://doi.org/10.1016/j.fm.2014.03.015

Article  CAS  PubMed  Google Scholar 

Zotta, T., Parente, E., and Ricciardi, A., Aerobic metabolism in the genus Lactobacillus: impact on stress response and potential applications in the food industry, J. Appl. Microbiol., 2017, vol. 122, no. 4, pp. 857—869. https://doi.org/10.1111/jam.13399

Article  CAS  PubMed  Google Scholar 

Kang, T., Korbe, D.R., and Tanaka, T., Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1, AMB Express, 2013, vol. 3, no. 1. https://doi.org/10.1186/2191-0855-3-10

Stevens, M.J.A., Wiersma, A., de Vos, W.M., et al., Improvement of Lactobacillus plantarum aerobic growth as directed by comprehensive transcriptome analysis, Appl. Environ. Microbiol., 2008, vol. 74, no. 15, pp. 4776—4778. https://doi.org/10.1128/AEM.00136-08

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu, J. and Holmgren, A., The thioredoxin antioxidant system: review, Free Radic. Biol. Med., 2014, vol. 66, no. 8, pp. 75—87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036

Article  CAS  PubMed  Google Scholar 

Siciliano, R.A., Pannella, G., Lippolis, R., et al., Impact of aerobic and respirative life-style on Lactobacillus casei N87 proteome, Int. J. Food Microbiol., 2019, vol. 298, pp. 51—62. https://doi.org/10.1016/j.ijfoodmicro.2019.03.006

Article  CAS  PubMed  Google Scholar 

Dinarieva, T.Y., Klimko, A.I., Kahnt, J., et al., Adaptation of Lacticaseibacillus rhamnosus CM MSU 529 to aerobic growth: a proteomic approach, Microorganisms, 2023, vol. 11, no. 2. https://doi.org/10.3390/microorganisms11020313

Averina, O.V., Kovtun, A.S., Mavletova, D.A., et al., Oxidative stress response of probiotic strain Bifidobacterium longum subsp. longum GT15, Foods, 2023, vol. 12, no. 18.

Comments (0)

No login
gif