Causal Effects of the Gut Microbiota on Cerebral Infarction: A Two-Sample Mendelian Randomization Study

Dirnagl, U., Iadecola, C., and Moskowitz, M.A., Pathobiology of ischaemic stroke: an integrated view, Trends Neurosci., 1999, vol. 22, pp. 391—397. https://doi.org/10.1016/s0166-2236(99)01401-0

Article  CAS  PubMed  Google Scholar 

Kristensen, B., Malm, J., Carlberg, B., et al., Epidemiology and ethiology of ischemic stroke in young adults aged 18 to 44 years in northern Sweden, Stroke, 1997, vol. 28, pp. 1702—1709. https://doi.org/10.1161/01.str.28.9.1702

Article  CAS  PubMed  Google Scholar 

Guidetti, D., Baratti, M., Zucco, R., et al., Incidence of stroke in young adults in the Reggio Emilia area, northern Italy, Neuroepidemiology, 1993, vol. 12, pp. 82—87. https://doi.org/10.1159/000110304

Article  CAS  PubMed  Google Scholar 

Ma, Q., Xing, C., Long, W., et al., Impact of microbiota on central nervous system and neurological diseases: the gut—brain axis, J. Neuroinflamm., 2019, vol. 16, p. 53. https://doi.org/10.1186/s12974-019-1434-3

Article  Google Scholar 

Yamashiro, K., Tanaka, R., Urabe, T., et al., Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke, PLoS One, 2017, vol. 12. https://doi.org/10.1371/journal.pone.0171521

Yin, J., Liao, S.X., He, Y., et al., Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack, J. Am. Heart Assoc., 2015, vol. 4. https://doi.org/10.1161/jaha.115.002699

Huang, L., Wang, T., Wu, Q., et al., Analysis of microbiota in elderly patients with acute cerebral infarction, Peer J., 2019, vol. 7. https://doi.org/10.7717/peerj.6928

Tan, C., Wu, Q., Wang, H., et al., Dysbiosis of gut microbiota and short-chain fatty acids in acute ischemic stroke and the subsequent risk for poor functional outcomes, JPEN J. Parenter Enteral Nutr., 2021, vol. 45, pp. 518—529. https://doi.org/10.1002/jpen.1861

Article  CAS  PubMed  Google Scholar 

Li, N., Wang, X., Sun, C., et al., Change of intestinal microbiota in cerebral ischemic stroke patients, BMC Microbiol., 2019, vol. 19, p. 191. https://doi.org/10.1186/s12866-019-1552-1

Article  PubMed  PubMed Central  Google Scholar 

Xu, K., Gao, X., Xia, G., et al., Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn, Gut, 2021, vol. 70, pp. 1486–1494. https://doi.org/10.1136/gutjnl-2020-323263

Zeng, X., Gao, X., Peng, Y., et al., Higher risk of stroke is correlated with increased opportunistic pathogen load and reduced levels of butyrate-producing bacteria in the gut, Front. Cell Infect. Microbiol., 2019, vol. 9. https://doi.org/10.3389/fcimb.2019.00004

Li, H., Zhang, X., Pan, D., et al., Dysbiosis characteristics of gut microbiota in cerebral infarction patients, Transl. Neurosci., 2020, vol. 11, pp. 124—133. https://doi.org/10.1515/tnsci-2020-0117

Article  PubMed  PubMed Central  Google Scholar 

Chen, Y., Liang, J., Ouyang, F., et al., Persistence of gut microbiota dysbiosis and chronic systemic inflammation after cerebral infarction in cynomolgus monkeys, Front. Neurol., 2019, vol. 10. https://doi.org/10.3389/fneur.2019.00661

Zhu, W., Gregory, J.C., Org, E., et al., Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk, Cell, 2016, vol. 165, pp. 111—124. https://doi.org/10.1016/j.cell.2016.02.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benakis, C., Brea, D., Caballero, S., et al., Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells, Nat. Med., 2016, vol. 22, pp. 516—523. https://doi.org/10.1038/nm.4068

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh, V., Roth, S., Llovera, G., et al., Microbiota dysbiosis controls the neuroinflammatory response after stroke, J. Neurosci., 2016, vol. 36, pp. 7428—7440. https://doi.org/10.1523/jneurosci.1114-16.2016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davies, N.M., Holmes, M.V., and Davey Smith, G., Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians, BMJ, 2018, vol. 362. https://doi.org/10.1136/bmj.k601

Davey Smith, G., and Hemani, G., Mendelian randomization: genetic anchors for causal inference in epidemiological studies, Hum. Mol. Genet., 2014, vol. 23, pp. R89—R98. https://doi.org/10.1093/hmg/ddu328

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurilshikov, A., Medina-Gomez, C., Bacigalupe, R., et al., Large-scale association analyses identify host factors influencing human gut microbiome composition, Nat. Genet., 2021, vol. 53, pp. 156—165. https://doi.org/10.1038/s41588-020-00763-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Null, R.C.T.R., Team, R., Null, R.C.T., et al., R: a language and environment for statistical computing, Computing, 2011, vol. 1, pp. 12—21. https://doi.org/10.1890/0012-9658(2002)083[3097:C-FHIWS]2.0.CO;2

Article  Google Scholar 

Wu, S., Wu, B., Liu, M., et al., Stroke in China: advances and challenges in epidemiology, prevention, and management, Lancet Neurol., 2019, vol. 18, pp. 394–405. https://doi.org/10.1016/s1474-4422(18)30500-3

Article  PubMed  Google Scholar 

Ellekjaer, E.F., Wyller, T.B., Sverre, J.M., et al., Lifestyle factors and risk of cerebral infarction, Stroke, 1992, vol. 23, pp. 829—834. https://doi.org/10.1161/01.str.23.6.829

Article  CAS  PubMed  Google Scholar 

Isozumi, K., Obesity as a risk factor for cerebrovascular disease, Keio J. Med., 2004, vol. 53, pp. 7—11. https://doi.org/10.2302/kjm.53.7

Article  PubMed  Google Scholar 

Rogosa, M., Peptococcaceae, a new family to include the gram-positive, anaerobic cocci of the genera Peptococcus, Peptostreptococcus, and Ruminococcus, Int. J. Syst. Evol. Microbiol., 1971, vol. 21, pp. 234—237. https://doi.org/10.1099/00207713-21-3-234

Article  Google Scholar 

Luczynski, P., McVey Neufeld, K.A., Oriach, C.S., et al., Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior, Int. J. Neuropsychopharmacol., 2016, vol. 19, p. pyw020. https://doi.org/10.1093/ijnp/pyw020

Prindiville, T., Cantrell, M., and Wilson, K.H., Ribosomal DNA sequence analysis of mucosa-associated bacteria in Crohn’s disease, Inflamm. Bowel Dis., 2004, vol. 10, pp. 824—833. https://doi.org/10.1097/00054725-200411000-00017

Article  PubMed  Google Scholar 

Mejía-León, M.E., Petrosino, J.F., Ajami, N.J., et al., Fecal microbiota imbalance in Mexican children with type 1 diabetes, Sci. Rep., 2014, vol. 4. https://doi.org/10.1038/srep03814

Houlden, A., Goldrick, M., Brough, D., et al., Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production, Brain Behav. Immun., 2016, vol. 57, pp. 10—20. https://doi.org/10.1016/j.bbi.2016.04.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sorbara, M.T., Littmann, E.R., Fontana, E., et al., Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter- and intra-species diversity, Cell Host Microbe, 2020, vol. 28, pp. 134—146. https://doi.org/10.1016/j.chom.2020.05.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wanapaisan, P., Chuansangeam, M., Nopnipa, S., et al., Association between gut microbiota with mild cognitive impairment and Alzheimer’s disease in a Thai population, Neurodegener. Dis., 2022, vol. 22, pp. 43—54. https://doi.org/10.1159/000526947

Article  CAS  PubMed  Google Scholar 

Shi, J., Zhao, Y., Chen, Q., et al., Association analysis of gut microbiota and prognosis of patients with acute ischemic stroke in basal ganglia region, Microorganisms, 2023, vol. 11, p. 2667. https://doi.org/10.3390/microorganisms11112667

Ling, Y., Gong, T., Zhang, J., et al., Gut microbiome signatures are biomarkers for cognitive impairment in patients with ischemic stroke, Front. Aging Neurosci., 2020, vol. 12. https://doi.org/10.3389/fnagi.2020.511562

Chang, Y., Gao, G., and Feng, C., Association between gut microbiota and gastric cancers: a two-sample Mendelian randomization study, Front. Microbiol., 2024, vol. 15. https://doi.org/10.3389/fmicb.2024.1383530

Comments (0)

No login
gif