Dirnagl, U., Iadecola, C., and Moskowitz, M.A., Pathobiology of ischaemic stroke: an integrated view, Trends Neurosci., 1999, vol. 22, pp. 391—397. https://doi.org/10.1016/s0166-2236(99)01401-0
Article CAS PubMed Google Scholar
Kristensen, B., Malm, J., Carlberg, B., et al., Epidemiology and ethiology of ischemic stroke in young adults aged 18 to 44 years in northern Sweden, Stroke, 1997, vol. 28, pp. 1702—1709. https://doi.org/10.1161/01.str.28.9.1702
Article CAS PubMed Google Scholar
Guidetti, D., Baratti, M., Zucco, R., et al., Incidence of stroke in young adults in the Reggio Emilia area, northern Italy, Neuroepidemiology, 1993, vol. 12, pp. 82—87. https://doi.org/10.1159/000110304
Article CAS PubMed Google Scholar
Ma, Q., Xing, C., Long, W., et al., Impact of microbiota on central nervous system and neurological diseases: the gut—brain axis, J. Neuroinflamm., 2019, vol. 16, p. 53. https://doi.org/10.1186/s12974-019-1434-3
Yamashiro, K., Tanaka, R., Urabe, T., et al., Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke, PLoS One, 2017, vol. 12. https://doi.org/10.1371/journal.pone.0171521
Yin, J., Liao, S.X., He, Y., et al., Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack, J. Am. Heart Assoc., 2015, vol. 4. https://doi.org/10.1161/jaha.115.002699
Huang, L., Wang, T., Wu, Q., et al., Analysis of microbiota in elderly patients with acute cerebral infarction, Peer J., 2019, vol. 7. https://doi.org/10.7717/peerj.6928
Tan, C., Wu, Q., Wang, H., et al., Dysbiosis of gut microbiota and short-chain fatty acids in acute ischemic stroke and the subsequent risk for poor functional outcomes, JPEN J. Parenter Enteral Nutr., 2021, vol. 45, pp. 518—529. https://doi.org/10.1002/jpen.1861
Article CAS PubMed Google Scholar
Li, N., Wang, X., Sun, C., et al., Change of intestinal microbiota in cerebral ischemic stroke patients, BMC Microbiol., 2019, vol. 19, p. 191. https://doi.org/10.1186/s12866-019-1552-1
Article PubMed PubMed Central Google Scholar
Xu, K., Gao, X., Xia, G., et al., Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn, Gut, 2021, vol. 70, pp. 1486–1494. https://doi.org/10.1136/gutjnl-2020-323263
Zeng, X., Gao, X., Peng, Y., et al., Higher risk of stroke is correlated with increased opportunistic pathogen load and reduced levels of butyrate-producing bacteria in the gut, Front. Cell Infect. Microbiol., 2019, vol. 9. https://doi.org/10.3389/fcimb.2019.00004
Li, H., Zhang, X., Pan, D., et al., Dysbiosis characteristics of gut microbiota in cerebral infarction patients, Transl. Neurosci., 2020, vol. 11, pp. 124—133. https://doi.org/10.1515/tnsci-2020-0117
Article PubMed PubMed Central Google Scholar
Chen, Y., Liang, J., Ouyang, F., et al., Persistence of gut microbiota dysbiosis and chronic systemic inflammation after cerebral infarction in cynomolgus monkeys, Front. Neurol., 2019, vol. 10. https://doi.org/10.3389/fneur.2019.00661
Zhu, W., Gregory, J.C., Org, E., et al., Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk, Cell, 2016, vol. 165, pp. 111—124. https://doi.org/10.1016/j.cell.2016.02.011
Article CAS PubMed PubMed Central Google Scholar
Benakis, C., Brea, D., Caballero, S., et al., Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells, Nat. Med., 2016, vol. 22, pp. 516—523. https://doi.org/10.1038/nm.4068
Article CAS PubMed PubMed Central Google Scholar
Singh, V., Roth, S., Llovera, G., et al., Microbiota dysbiosis controls the neuroinflammatory response after stroke, J. Neurosci., 2016, vol. 36, pp. 7428—7440. https://doi.org/10.1523/jneurosci.1114-16.2016
Article CAS PubMed PubMed Central Google Scholar
Davies, N.M., Holmes, M.V., and Davey Smith, G., Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians, BMJ, 2018, vol. 362. https://doi.org/10.1136/bmj.k601
Davey Smith, G., and Hemani, G., Mendelian randomization: genetic anchors for causal inference in epidemiological studies, Hum. Mol. Genet., 2014, vol. 23, pp. R89—R98. https://doi.org/10.1093/hmg/ddu328
Article CAS PubMed PubMed Central Google Scholar
Kurilshikov, A., Medina-Gomez, C., Bacigalupe, R., et al., Large-scale association analyses identify host factors influencing human gut microbiome composition, Nat. Genet., 2021, vol. 53, pp. 156—165. https://doi.org/10.1038/s41588-020-00763-1
Article CAS PubMed PubMed Central Google Scholar
Null, R.C.T.R., Team, R., Null, R.C.T., et al., R: a language and environment for statistical computing, Computing, 2011, vol. 1, pp. 12—21. https://doi.org/10.1890/0012-9658(2002)083[3097:C-FHIWS]2.0.CO;2
Wu, S., Wu, B., Liu, M., et al., Stroke in China: advances and challenges in epidemiology, prevention, and management, Lancet Neurol., 2019, vol. 18, pp. 394–405. https://doi.org/10.1016/s1474-4422(18)30500-3
Ellekjaer, E.F., Wyller, T.B., Sverre, J.M., et al., Lifestyle factors and risk of cerebral infarction, Stroke, 1992, vol. 23, pp. 829—834. https://doi.org/10.1161/01.str.23.6.829
Article CAS PubMed Google Scholar
Isozumi, K., Obesity as a risk factor for cerebrovascular disease, Keio J. Med., 2004, vol. 53, pp. 7—11. https://doi.org/10.2302/kjm.53.7
Rogosa, M., Peptococcaceae, a new family to include the gram-positive, anaerobic cocci of the genera Peptococcus, Peptostreptococcus, and Ruminococcus, Int. J. Syst. Evol. Microbiol., 1971, vol. 21, pp. 234—237. https://doi.org/10.1099/00207713-21-3-234
Luczynski, P., McVey Neufeld, K.A., Oriach, C.S., et al., Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior, Int. J. Neuropsychopharmacol., 2016, vol. 19, p. pyw020. https://doi.org/10.1093/ijnp/pyw020
Prindiville, T., Cantrell, M., and Wilson, K.H., Ribosomal DNA sequence analysis of mucosa-associated bacteria in Crohn’s disease, Inflamm. Bowel Dis., 2004, vol. 10, pp. 824—833. https://doi.org/10.1097/00054725-200411000-00017
Mejía-León, M.E., Petrosino, J.F., Ajami, N.J., et al., Fecal microbiota imbalance in Mexican children with type 1 diabetes, Sci. Rep., 2014, vol. 4. https://doi.org/10.1038/srep03814
Houlden, A., Goldrick, M., Brough, D., et al., Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production, Brain Behav. Immun., 2016, vol. 57, pp. 10—20. https://doi.org/10.1016/j.bbi.2016.04.003
Article CAS PubMed PubMed Central Google Scholar
Sorbara, M.T., Littmann, E.R., Fontana, E., et al., Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter- and intra-species diversity, Cell Host Microbe, 2020, vol. 28, pp. 134—146. https://doi.org/10.1016/j.chom.2020.05.005
Article CAS PubMed PubMed Central Google Scholar
Wanapaisan, P., Chuansangeam, M., Nopnipa, S., et al., Association between gut microbiota with mild cognitive impairment and Alzheimer’s disease in a Thai population, Neurodegener. Dis., 2022, vol. 22, pp. 43—54. https://doi.org/10.1159/000526947
Article CAS PubMed Google Scholar
Shi, J., Zhao, Y., Chen, Q., et al., Association analysis of gut microbiota and prognosis of patients with acute ischemic stroke in basal ganglia region, Microorganisms, 2023, vol. 11, p. 2667. https://doi.org/10.3390/microorganisms11112667
Ling, Y., Gong, T., Zhang, J., et al., Gut microbiome signatures are biomarkers for cognitive impairment in patients with ischemic stroke, Front. Aging Neurosci., 2020, vol. 12. https://doi.org/10.3389/fnagi.2020.511562
Chang, Y., Gao, G., and Feng, C., Association between gut microbiota and gastric cancers: a two-sample Mendelian randomization study, Front. Microbiol., 2024, vol. 15. https://doi.org/10.3389/fmicb.2024.1383530
Comments (0)