Assan, N., Influence of stage of lactation on quantitative and qualitative milk production parameters in goats, Sci. J. Anim. Sci., 2014, vol. 3, no. 12, pp. 291—300. https://doi.org/10.14196/sjas.v3i12.1775
Osorio, J.S., Lohakare, J., and Bionaz, M., Biosynthesis of milk fat, protein, and lactose: roles of transcriptional and posttranscriptional regulation, Physiol. Genomics, 2016, vol. 48, no. 4. 231—256. https://doi.org/10.1152/physiolgenomics.00016.2015
Article CAS PubMed Google Scholar
Valencia-Magaña, F., Prado-Rebolledo, O., Hernández-Rivera, J., et al., The goat udder: mechanism of milk secretion, and protein/fat synthesis, Abanico Vet., 2023, vol. 13. https://doi.org/10.21929/abavet2023.10
Zhang, J., Deng, L., Zhang, X., et al. Multiple essential amino acids regulate mammary metabolism and milk protein synthesis in lactating dairy cows, Anim. Feed Sci. Technol., 2023, vol. 296. https://doi.org/10.1016/j.anifeedsci.2022.115557
Cherepanov, G.G. and Makar, Z.N., The conjugate regulation of mammary blood flow and secretory cell metabolism: analysis of problem, Usp. Fiziol. Nauk, 2007, vol. 38, no. 1, pp. 74—85.
Michailidou, S., Gelasakis, A., Banos, G., et al., Comparative transcriptome analysis of milk somatic cells during lactation between two intensively reared dairy sheep breeds, Front. Genet., 2021, vol. 12. https://doi.org/10.3389/fgene.2021.700489
Xuan, R., Wang, J., Zhao, X., et al., Transcriptome analysis of goat mammary gland tissue reveals the adaptive strategies and molecular mechanisms of lactation and involution, Int. J. Mol. Sci., 2022, vol. 23, no. 22. https://doi.org/10.3390/ijms232214424
Wang, M. and Ibeagha-Awemu, E.M., Impacts of epigenetic processes on the health and productivity of livestock, Front. Genet., 2021, vol. 11. https://doi.org/10.3389/fgene.2020.613636
Huntzinger, E. and Izaurralde, E., Gene silencing by microRNAs: contributions of translational repression and mRNA decay, Nat. Rev. Genet., 2011, vol. 12, no. 2, pp. 99—110. https://doi.org/10.1038/nrg2936
Article CAS PubMed Google Scholar
Rani, P., Yenuganti, V.R., Shandilya, S., et al., miRNAs: the hidden bioactive component of milk, Trends Food Science Technol., 2017, vol. 65, pp. 94—102. https://doi.org/10.1016/j.tifs.2017.05.007
Quan, S., Nan, X., Wang, K., et al., Different diets change the expression of bovine serum extracellular vesicle-miRNAs, Animals, 2019, vol. 9, no. 12. https://doi.org/10.3390/ani9121137
Dysin, A.P., Barkova, O.Y., and Pozovnikova, M.V., The role of microRNAs in the mammary gland development, health, and function of cattle, goats, and sheep, Non-Coding RNA, 2021, vol. 7, no. 4, p. 78. https://doi.org/10.3390/ncrna7040078
Article CAS PubMed PubMed Central Google Scholar
Xuan, R., Chao, T., and Wang, A., Characterization of microRNA profiles in the mammary gland tissue of dairy goats at the late lactation, dry period and late gestation stages, PLoS One, 2020, vol. 15, no. 6. https://doi.org/10.1371/journal.pone.0234427
Tudisco, R., Morittu, V.M., Addi, L., et al., Influence of pasture on stearoyl-CoA desaturase and miRNA 103 expression in goat milk: preliminary results, Animals, 2019, vol. 9, no. 9, p. 606. https://doi.org/10.3390/ani9090606
Article PubMed PubMed Central Google Scholar
Wang, Y., Lin, Y., Wu, S., et al., BioKA: a curated and integrated biomarker knowledgebase for animals, Nucleic Acids Res., 2024, vol. 52, no. D1, pp. D1121—D1130. https://doi.org/10.1093/nar/gkad873
Article CAS PubMed Google Scholar
Mobuchon, L., Marthey, S., Boussaha, M., et al., Annotation of the goat genome using next generation sequencing of microRNA expressed by the lactating mammary gland: comparison of three approaches, BMC Genomics, 2015, vol. 16, pp. 1—17. https://doi.org/10.1186/s12864-015-1471-y
Varkonyi-Gasic, E., Wu, R., Wood, M., et al., Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs, Plant Methods, 2007, vol. 3, no. 1, pp. 1—12. https://doi.org/10.1186/1746-4811-3-12
Pozovnikova, M.V., Leibova, V.B., Tulinova, O.V., et al., Comparison of miR-106b, miR-191, and miR-30d expression dynamics in milk with regard to its composition in Holstein and Ayrshire cows, Anim. Biosci., 2024, vol. 37, no. 6, p. 965. https://doi.org/10.5713/ab.23.0427
Article CAS PubMed PubMed Central Google Scholar
Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 2001, vol. 25, no. 4, pp. 402—408. https://doi.org/10.1006/meth.2001.1262
Article CAS PubMed Google Scholar
Zhao, X., Song, Y., Zhang, Y., et al., Predictions of milk fatty acid contents by mid-infrared spectroscopy in Chinese Holstein cows, Molecules, 2023, vol. 28, no. 2, p. 666. https://doi.org/10.3390/molecules28020666
Article CAS PubMed PubMed Central Google Scholar
Chang, L. and Xia, J., MicroRNA regulatory network analysis using miRNet 2.0, Methods Mol. Biol., 2023, vol. 2594, pp. 185—204. https://doi.org/10.1007/978-1-0716-2815-7_14
Article CAS PubMed Google Scholar
Huang, H.Y., Lin, Y.C.D., Cui, S., et al., miRTarBase update 2022: an informative resource for experimentally validated miRNA—target interactions, Nucleic Acids Res., 2022, vol. 50, no. D1, pp. D222—D230. https://doi.org/10.1093/nar/gkab1079
Article CAS PubMed Google Scholar
Selionova, M., Trukhachev, V., Aibazov, M., et al., Genome-wide association study of milk composition in Karachai goats, Animals, 2024, vol. 14, no. 2, p. 327. https://doi.org/10.3390/ani14020327
Article PubMed PubMed Central Google Scholar
Akshit, F.N., Mao, T., Kaushik, R., et al., Global comprehensive review and meta-analysis of goat milk composition by location, publication year and lactation stage, J. Food Compos. Anal., 2024, vol. 127. https://doi.org/10.1016/j.jfca.2024.105973
Presti, V.L., Tudisco, R., Di Rosa, A.R., et al., Influence of season on milk fatty acid profile and sensory characteristics of grazing goats in a Mediterranean environment: a sustainable agro-food system, Anim. Prod. Sci., 2023, vol. 63, no. 7, pp. 689—703. https://doi.org/10.1071/AN21538
Kováčová, M., Výrostková, J., Dudriková, E., et al., Assessment of quality and safety of farm level produced cheeses from sheep and goat milk, Appl. Sci., 2021, vol. 11, no. 7, p. 3196. https://doi.org/10.3390/app11073196
Kljajevic, N.V., Tomasevic, I.B., Miloradovic, Z.N., et al., Seasonal variations of Saanen goat milk composition and the impact of climatic conditions, J. Food Sci. Technol., 2018, vol. 55, pp. 299—303. https://doi.org/10.1007/s13197-017-2938-4
Article CAS PubMed Google Scholar
Ibrahim, N.S. and Tajuddin, F.H.A., Evaluation of milk production and milk composition at different stages of Saanen dairy goats, J. Agrobiotechnol., 2021, vol. 12, no. 1S, pp. 204—211. https://doi.org/10.37231/jab.2021.12.1S.286
Bernard, L., Leroux, C., and Chilliard, Y., Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland, Bioact. Compon. Milk, 2008, pp. 67—108. https://doi.org/10.1007/978-0-387-74087-4_2
Batista, C.P., Castro, S.M., Correa, H.J., et al., Relation between liver lipid content and plasma bio-chemical indicators in dairy cows, Acta Sci. Vet., 2020, no. 48, pp. 122—124. http://hdl.handle.net/10183/211802.
Lebedeva, I.Yu., Leibova, V.B., Solomakhin, A.A., et al., Reproductive status and blood biochemical parameters of Holstein cows with different milk productivity referred to the dynamics of lipid metabolism during the postpartum period, S-kh. Biol., 2018, vol. 53, no. 6, pp. 1180—1189. https://doi.org/10.15389/agrobiology.2018.6.1180rus
Antunovic, Z., Speranda, M., Novoselec, J., et al., Blood metabolic profile and acid-base balance of dairy goats and their kids during lactation, Vet. Arhiv, 2017, vol. 87, no. 1, pp. 43—55.
Leibova, V.B. and Pozovnikova, M.V., Variation of metabolic markers in the blood of dairy goats with different milk yield dynamics in the first half of lactation, Agrar. Nauka, 2024, no. 2, pp. 44—47. https://doi.org/10.32634/0869-8155-2024-379-2-44-47
Leibova, V.B. and Pozovnikova, M.V., Variability of biochemical blood parameters in Saanen goats during the first months of lactation, Perm. Agrar. Vestn., 2022, no. 3(39), pp. 103—109. https://doi.org/10.47737/2307-2873_2022_39_102
Modepalli, V., Kumar, A., Hinds, L.A., et al., Differential temporal expression of milk miRNA during the lactation cycle of the marsupial tammar wallaby (Macropus eugenii), BMC Genomics, 2014, vol. 15, pp. 1—18. https://doi.org/10.1186/1471-2164-15-1012
Lin, X., Luo, J., Zhang, L., et al., MicroRNAs synergistically regulate milk fat synthesis in mammary gland epithelial cells of dairy goats, Gene Expression, 2013, vol. 16, no. 1, pp. 1—13. https://doi.org/10.3727/105221613X13776146743262
Article CAS PubMed PubMed Central Google Scholar
Ammah, A.A., Do, D.N., Bissonnette, N., et al., Co-expression network analysis identifies miRNA—mRNA networks potentially regulating milk traits and blood metabolites, Int. J. Mol. Sci., 2018, vol. 19, no. 9, p. 2500. https://doi.org/10.3390/ijms19092500
Article CAS PubMed PubMed Central Google Scholar
Xu, E., Chen, C., Fu, J., et al., Dietary fatty acids in gut health: absorption, metabolism and function, Anim. Nutr., 2021, vol. 7, no. 4, pp. 1337—1344. https://doi.org/10.1016/j.aninu.2021.09.010
Article CAS PubMed PubMed Central Google Scholar
Wang, L., Xu, F., Song, Z., et al., A high fat diet with a high C18:0/C16:0
Comments (0)