P2Y6 promoted pruning of FSTL1 nerves by cutaneous macrophages to reset pain threshold and cardiac function

Klapproth H, Huerta AM, Fabri M (2023) Macrophage biology in human granulomatous skin inflammation. Int J Mol Sci 24:4624. https://doi.org/10.3390/ijms24054624

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakai K (2021) Multiple roles of macrophage in skin. J Dermatol Sci 104:2–10. https://doi.org/10.1016/j.jdermsci.2021.08.008

Article  CAS  PubMed  Google Scholar 

Nakamizo S, Dutertre CA, Khalilnezhad A, Zhang XM, Lim S, Lum J, Koh G, Foong C, Yong P, Tan KJ, Sato R, Tomari K, Yvan-Charvet L, He H, Guttman-Yassky E, Malleret B, Shibuya R, Iwata M, Janela B, Goto T, Lucinda TS, Tang M, Theng C, Julia V, Hacini-Rachinel F, Kabashima K, Ginhoux F (2021) Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing IL1B and IL23A in psoriasis. J Exp Med 218:e20202345. https://doi.org/10.1084/jem.20202345

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Carvalho BG, Francisco GR, Bagatini MD (2024) Current treatment of psoriasis triggered by cytokine storm and future immunomodulation strategies. J Mol Med 102:1187–1198. https://doi.org/10.1007/s00109-024-02481-1

Article  CAS  Google Scholar 

Chinnapaka S, Yang KS, Surucu Y, Bengur FB, Arellano JA, Tirmizi Z, Malekzadeh H, Epperly MW, Hou W, Greenberger JS, Rubin JP, Ejaz A (2023) Human adipose ECM alleviates radiation-induced skin fibrosis via endothelial cell-mediated M2 macrophage polarization. iScience 26:107660. https://doi.org/10.1016/j.isci.2023.107660

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin L, Zhang E, Mao T, Zhu Y, Ni S, Li Y, Liu C, Fang Y, Ni K, Lu Y, Li H, Zhou M, Hu Q (2024) Macrophage P2Y(6)R activation aggravates psoriatic inflammation through IL-27-mediated Th1 responses. Acta Pharm Sin B 14:4360–4377. https://doi.org/10.1016/j.apsb.2024.06.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao W, Ma L, Deng D, Zhang T, Han L, Xu F, Huang S, Ding Y, Chen X (2023) M2 macrophage polarization: a potential target in pain relief. Front Immunol 14:1243149. https://doi.org/10.3389/fimmu.2023.1243149

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng J, Chen H, Zhang B (2022) Nerve-stem cell crosstalk in skin regeneration and diseases. Trends Mol Med 28:583–595. https://doi.org/10.1016/j.molmed.2022.04.005

Article  CAS  PubMed  Google Scholar 

Huang S, Kuri P, Aubert Y, Brewster M, Li N, Farrelly O, Rice G, Bae H, Prouty S, Dentchev T, Luo W, Capell BC, Rompolas P (2021) Lgr6 marks epidermal stem cells with a nerve-dependent role in wound re-epithelialization. Cell Stem Cell 28:1582–1596. https://doi.org/10.1016/j.stem.2021.05.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rao J, Wang H, Ni M, Wang Z, Wang Z, Wei S, Liu M, Wang P, Qiu J, Zhang L, Wu C, Shen H, Wang X, Cheng F, Lu L (2022) FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2. Gut 71:2539–2550. https://doi.org/10.1136/gutjnl-2021-325150

Article  CAS  PubMed  Google Scholar 

Xiang S, Zhang Y, Jiang T, Ke Z, Shang Y, Ning W, Yang Z, Zhang T (2020) Knockdown of Follistatin-like 1 disrupts synaptic transmission in hippocampus and leads to cognitive impairments. Exp Neurol 333:113412. https://doi.org/10.1016/j.expneurol.2020.113412

Article  CAS  PubMed  Google Scholar 

Li KC, Wang F, Zhong YQ, Lu YJ, Wang Q, Zhang FX, Xiao HS, Bao L, Zhang X (2011) Reduction of follistatin-like 1 in primary afferent neurons contributes to neuropathic pain hypersensitivity. Cell Res 21:697–699. https://doi.org/10.1038/cr.2011.43

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang H, Zhang L, Liu X, Sun W, Kato K, Chen C, Li X, Li T, Sun Z, Han W, Zhang F, Xiao Q, Yang Z, Hu J, Qin Z, Adams RH, Gao X, He Y (2020) Angiocrine FSTL1 (follistatin-like protein 1) insufficiency leads to atrial and venous wall fibrosis via SMAD3 activation. Arterioscler Thromb Vasc Biol 40:958–972. https://doi.org/10.1161/ATVBAHA.119.313901

Article  CAS  PubMed  Google Scholar 

Cutolo M, Soldano S, Smith V (2019) Pathophysiology of systemic sclerosis: current understanding and new insights. Expert Rev Clin Immunol 15:753–764. https://doi.org/10.1080/1744666X.2019.1614915

Article  CAS  PubMed  Google Scholar 

Liu S, Wang ZF, Su YS, Ray RS, Jing XH, Wang YQ, Ma Q (2020) Somatotopic organization and intensity dependence in driving distinct NPY-expressing sympathetic pathways by electroacupuncture. Neuron 108:436–450. https://doi.org/10.1016/j.neuron.2020.07.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen T, Zhang WW, Chu YX, Wang YQ (2020) Acupuncture for pain management: molecular mechanisms of action. Am J Chin Med 48:793–811. https://doi.org/10.1142/S0192415X20500408

Article  CAS  PubMed  Google Scholar 

Yang L, Ding W, Dong Y, Chen C, Zeng Y, Jiang Z, Gan S, You Z, Zhao Y, Zhang Y, Ren X, Wang S, Dai J, Chen Z, Zhu S, Chen L, Shen S, Mao J, Xie Z (2022) Electroacupuncture attenuates surgical pain-induced delirium-like behavior in mice via remodeling gut microbiota and dendritic spine. Front Immunol 13:955581. https://doi.org/10.3389/fimmu.2022.955581

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye Y, Birnbaum Y, Widen SG, Zhang Z, Zhu S, Bajaj M, Chen H (2020) Acupuncture reduces hypertrophy and cardiac fibrosis, and improves heart function in mice with diabetic cardiomyopathy. Cardiovasc Drugs Ther 34:835–848. https://doi.org/10.1007/s10557-020-07043-4

Article  CAS  PubMed  Google Scholar 

Mao JJ, Liou KT, Baser RE, Bao T, Panageas KS, Romero S, Li QS, Gallagher RM, Kantoff PW (2021) Effectiveness of electroacupuncture or auricular acupuncture vs usual care for chronic musculoskeletal pain among cancer survivors: the PEACE randomized clinical trial. JAMA Oncol 7:720–727. https://doi.org/10.1001/jamaoncol.2021.0310

Article  PubMed  Google Scholar 

Cui X, Sun G, Cao H, Liu Q, Liu K, Wang S, Zhu B, Gao X (2022) Referred somatic hyperalgesia mediates cardiac regulation by the activation of sympathetic nerves in a rat model of myocardial ischemia. Neurosci Bull 38:386–402. https://doi.org/10.1007/s12264-022-00841-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian H, Zhao X, Zhang Y, Xia Z (2023) Abnormalities of glucose and lipid metabolism in myocardial ischemia-reperfusion injury. Biomed Pharmacother 163:114827. https://doi.org/10.1016/j.biopha.2023.114827

Article  CAS  PubMed  Google Scholar 

Zhu D, Li Z, Huang K, Caranasos TG, Rossi JS, Cheng K (2021) Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair. Nat Commun 12:1412. https://doi.org/10.1038/s41467-021-21682-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng R, Muraleedharan SV, Mokalled MH, Cavalli V (2023) Self-renewing macrophages in dorsal root ganglia contribute to promote nerve regeneration. Proc Natl Acad Sci U S A 120:e2079061176. https://doi.org/10.1073/pnas.2215906120

Article  CAS  Google Scholar 

Giniatullin R, Nistri A (2023) Role of ATP in migraine mechanisms: focus on P2X3 receptors. J Headache Pain 24:1. https://doi.org/10.1186/s10194-022-01535-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Inoue K, Tsuda M (2021) Nociceptive signaling mediated by P2X3, P2X4 and P2X7 receptors. Biochem Pharmacol 187:114309. https://doi.org/10.1016/j.bcp.2020.114309

Article  CAS  PubMed  Google Scholar 

Chen L, Li H, Liu X, Zhang N, Wang K, Shi A, Gao H, Akdis D, Saguner AM, Xu X, Osto E, Van de Veen W, Li G, Bayes-Genis A, Duru F, Song J, Li X, Hu S (2024) PBX/Knotted 1 homeobox-2 (PKNOX2) is a novel regulator of myocardial fibrosis. Signal Transduct Target Ther 9:9

Comments (0)

No login
gif